

Ulyssix Technologies, Inc.

1

Software Decommutation Implementations for End Users

K. Wade Nye, Ulyssix Technologies, Inc. Wade@Ulyssix.com

Glenn Rosenthal, Ulyssix Technologies, Inc. Glenn@Ulyssix.com

Abstract

Advances in computer processing power enabled telemetry decommutation to

transition from hardware to software implementations even with increasing data rates and

complexity of telemetry commutation. End users desire to integrate decommutation with

analysis scripts to create quick look results of their experiments. This paper discusses a

methodology of writing software telemetry decoms in pseudocode based on the Ulyssix

Tarsus Archive Data (TAD) data format and Ulyssix PCM hardware but all the ideas

presented are usable across many different vendor PCM hardware.

Introduction

Software telemetry decoms have fast development cycles and infinite flexibly in

implementing new features. The concatenation of these new customer driven features

result in a complex vendor software package. For some applications, like telemetry

check out of a test article, a custom software decom solution is desirable. The benefits

include simpler operation, simpler documentation, and reduction of human error during

expensive text events.

Publishing live telemetry data over computer networks coupled with the desire for

quick look analysis of telemetry data led to the need for customized integrated software

decoms and analysis. Some applications include feeding the telemetry data into

decommutation and analysis scripts written in languages such as Python, MatLab, or C#.

Tarsus Archive Data Format

The Tarsus Archive Data format (TAD) format begins with a file header followed

by packed telemetry minor frames appended with a data header (TarsusHS User’s

Manual Appendix B). When working from a TAD file the initial 328 byte file header

should be ignored (this is used exclusively with the Ulyssix TarsusPCM and Altair

software suites). The minor frame data header contains three 32-bit integers. The first

64-bits are a Binary Coded Decimal (BCD) time stamp in Julian Day/Hour/Min/Sec with

1 microsecond resolution format. The last 32-bit integer includes a 16-bit minor frame

counter and lock indicators. All Ulyssix PCM hardware Direct Memory Access (DMA)

transfers data to the computer in the TAD format. TAD data packets can be broadcast

over computer networks via User Datagram Protocol (UDP).

Ulyssix Technologies, Inc.

2

Due to operating system preference, the computer receives the TAD data from the

Ulyssix PCM hardware in Little Endian byte order. In Little Endian byte order, the least

significant byte occurs first in a 32-bit integer. Telemetry data is commutated in Big

Endian byte order, where the most significant byte occurs first. This Endianess mismatch

results in a difference in the telemetry byte number and the computer data byte number.

The two examples below show Decom Parameters affected by Little Endian Byte

Order. In the first example, a 16-bit Decom Parameter is broken from sixteen contiguous

bits in the telemetry data stream (yellow) into two non-adjacent byte locations (gray) by

Little Endian byte order. In the second example, a 48-bit Decom Parameter is broken

from forty-eight contiguous bits in the telemetry data stream (yellow) into three non-

adjacent sets of bytes (gray) by Little Endian byte order. Breaking a Decom Parameter

into non-adjacent bytes complicates the software decommutation algorithm.

16-Bit Decom Parameter and Little Endian Byte Order

48-Bit Decom Parameter and Little Endian Byte Order

For a given telemeter, the frame size, measured in bits per minor frame, and bit

rate are used to calculate the Packed Words and Block Size. Packed Words is the number

of 32-bit integers required to contain a minor frame plus the TAD Header (three 32-bit

integers). The number of 32-bit integers is important because data is moved from the

Ulyssix PCM hardware to the computer in increments of 32-bits. Any unused bits in a

32-bit integer are set to 0. Packed Bytes equals Packed Words multiplied by 4. This

converts from 32-bit integers to 8-bit bytes.

Ulyssix Technologies, Inc.

3

𝑃𝑎𝑐𝑘𝑒𝑑 𝑊𝑜𝑟𝑑𝑠 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(
𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑜𝑟

32
) + 3

The Block Size is the integer number of minor frames that occur in 10mS. The

10mS time interval is based on Microsoft Windows servicing DMA interrupt requests

from Ulyssix PCM hardware. Ulyssix PCM hardware delivers Block Size number of

Packed Words each 10mS.

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 = 𝐹𝑙𝑜𝑜𝑟(
𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ∗ 0.01

(𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑜𝑟 𝑓𝑟𝑎𝑚𝑒)
)

Setting Up the Frame

The first step in setting up a software decom is to define the parameters that

describe the frame. A telemetry frame includes a Frame Sync Pattern and at least one

minor frame. Often there are multiple minor frames per major frame. The Minor Frame

Counter runs from zero to number of minor frames minus one, however this paper begins

counting minor frames at Minor Frame 1. The Frame Sync Pattern is defined as the first

word in the minor frame (IRIG 106-15 Chapter 4). This paper refers to the first word

after the Frame Sync Pattern as Word 1. Frame length can be defined in many ways, but

this paper uses Bits per Minor Frame as the total number of bits in the minor frame

including the Frame Sync Pattern.

In many older telemeters, each Decom Parameter had the same number of bits.

This is referred to as Fixed Bits per Word. The need to pack more data into a fixed frame

size and the desire to include more complicated data encoding, like floating point

numbers, led to more complicated commutation with variable words sizes. This is

referred to Variable Bits per Word. For a decom with Variable Bits per Word, the

starting point is to build a table with the word number and word length. The Variable

Bits per Word table must be the same for each minor frame in a major frame.

The examples below show two different frames that both have 832 bits per minor

frame including the 32-bit Frame Sync Pattern. The first frame has one hundred 8-bit

words and a 32-bit frame sync pattern (only the first eighteen words are shown). This is a

Fixed Bits per Word Frame.

Fixed Bits per Word Frame

The second example is a Variable Bits per Word frame. There is a mix of 8-bit

and 10 bit words. In this example, there is a repeating pattern of word lengths every nine

words (shown in gray) this kind of repetition is common, but not required with Variable

Bits per Word. The repeating block of data has a total of 80 bits. Ten of these blocks

occur in the frame resulting in 32 bits of Frame Sync Patter and 800 bits of data.

Variable Bits per Word Frame

Ulyssix Technologies, Inc.

4

Define Decom Parameters

Each Decom Parameter has attributes required to extract the binary value from the

telemetry stream. The commutation type of the Decom Parameter determines some of

the required attributes. Commutation types simplify the definition of where the word

occurs in the frame. IRIG 106-15 Chapter 4 defines Normal, Sub, and Super

Commutation. In Normal Commutation, the parameter occurs once per minor frame and

occurs in the same word number in every minor frame. In Super Commutation, the

parameter occurs multiple times in each minor frame. The occurrences of the parameter

must be evenly spaced by a fixed number of words called the Interval. Please note with

Variable Bits per Word that Super Commutated parameters are expected to be equally

spaced in bits not words. In Sub Commutation, the parameter occurs in the same word

number but does not in every minor frame. The attribute, Frames, is the number of minor

frames between occurrences of the parameter.

For added flexibility in decommutation, non-IRIG Random and Random Normal

Commutation should also be considered. In Random Commutation, words can occur in

any word in any minor frame. For a Random Commutated word, each instance in the

frame must be defined by its Word Number and Minor Frame Number. For a Random

Commutated Decom Parameter, the Interval should be the number of samples per major

frame. In Random Normal Commutation, the parameter can occur in any word in a

minor frame, but must occur in the same words in every minor frame. Each occurrence

must be defined by its Word Number. For a Random Normal Commutated Decom

Parameter, the Interval should be the number of samples per minor frame.

Random Commutation

Random Normal Commutation

Each Decom Parameter needs to have the following attributes defined, depending

on its commutation type. See the chart below for the required value for each

commutation type.

Word Number – The number of word in the Variable Bits per Word table.

Minor Frame Number – The number of the minor frame.

Frames – The number of minor frames between Sub Commutated word occurrences.

Interval – For Super Commuated words, the number of words between parameter

occurrences. For Random, the number of parameter occurrences in the major frame. For

Random Normal, the number of parameter occurrences in the minor frame.

Sync Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

Frame 1

Frame 2

Frame 3

Frame 4

Sync Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

Frame 1

Frame 2

Frame 3

Frame 4

Ulyssix Technologies, Inc.

5

After each Decom Parameter is extracted from the telemetry stream, the series of

bit needs to converted to a data type. The series of bits must be manipulated to conform

to Most Significant Bit (MSB) first or Least Significant Bit (LSB) first. Typical data

types include unsigned binary, two’s compliment signed binary, one’s compliment signed

binary, binary coded decimal, and floating point numbers.

Software Decom Methodology

Reorganizing each Block Size of data to Big Endian byte order would be

algorithmically easy, but the resulting code must run on each data acquisition, is

computationally inefficient, and has performance issues at higher bit rates. Since the

Decom Parameter’s position in the telemetry frame is constant, the corresponding byte

location in the Little Endian data can be calculated before data acquisition begins. This

calculation is done for every word in the Variable Bits per Word table. Then during data

acquisition, a Decom Parameter can reference the pre-data acquisition calculation on the

Variable Bits per Word table to determine to byte location in the Little Endian data. This

method requires more complex code but is computationally efficient.

Pre-Data Acquisition Calculations

For simplicity, the pseudocode calculations in this paper are for Decom

Parameters with a maximum length of 32-bits. The code is easily expandable to Decom

Parameter lengths with a maximum of 64-bits, but, as previously mentioned, these

calculations require involve Little Endian byte order breaking a Decom Parameter into

three or more non-adjacent byte locations and unduly complicate the example code. All

calculations assume that the Decom Parameter is MSB. A conversion to LSB occurs

during data acquisition, if applicable. Here are the needed data structures in pseudocode:

class(Word)

{
 int StartByte; //first byte location

 int Offset; //bit offset in Start Byte

 int EndByte; //Second byte location for word split by Little Endian

 int LengthEnd; //bit length of End Byte

 int TotalBits; //bit count from the start of the minor frame to first bit in the word

 ulong Mask; //bit mask for words not split by Little Endian

 ulong StartMask; //bit mask for first byte location in Little Endian

 ulong EndMask; //bit mask for last byte location in Little Endian

}

Ulyssix Technologies, Inc.

6

List<Word> Words; //list of words where first entry is the FS Pattern

class(VarBitsPerWord)

{
 int bitLength; //number of bits from start of frame

}

//variable bits per word table

List<VarBitsPerWord> VariableBitsPerWordTable; //starts with FS Pattern

The Pre-Data Calculations step through the bit lengths in the Variable Bits per

Word table and calculate the byte location and bit masks for every word location in the

frame:

int bitLocation = 0; //number of bits from start of minor frame to start of word

int wc = 0; //word count in the var bits per word table

//step through each bit length in the Variable bits per Word Table

foreach (bitLength in VaraibleBitsPerWordTale)

{
 Words[wc].StartByte = Floor((bitLocation-1)/8);

 Words[wc].Offset = MOD(bitLocation-1, 8);

 Words[wc].EndByte = Floor((bitLocation-bitLength)/8);

 Words[wc].LengthEnd = 0;

 Words[wc].TotalBits = bitLocation;

 //correct offset for Little Endian

 if(Words[wc].Offset > 0)

 Words[wc].Offset = 8 - Words[wc].Offset;

 //correct start and end bytes for Little Endian

 int LEoffsetStart = MOD(Words[wc].StartByte, 4)

 int LEoffsetEnd = MOD(Words[wc].EndByte, 4)

 Words[wc].StartByte = Floor(Words[wc].StartByte/4)*4 + (3-LEoffsetStart);

 Words[wc].EndByte = Floor(Words[wc].EndByte/4)*4 + (3-LEoffsetStart);

 //check if little endian correction splits the word - aka start > end

 if (Words[wc].StartByte > Words[wc].EndByte)

 Words[wc].LengthEnd = bitLength-(LEoffsetEnd*8)- (8-Words[wc].Offset);

 //move End Byte back to the beginning of the 32-bit block

 Words[wc].EndByte = Floor(Words[wc].EndByte/4)*4;

 //create bit masks for isolating desired bits from bit stream

 Words[wc].Mask = Math.Pow(2, bitLength) - 1;

Words[wc].StartMask = (Math.Pow(2, bitLength - Words[wc].LengthEnd) - 1) << Words[wc].Offset;

 Words[wc].EndMask = Math.Pow(2, Words[wc].LengthEnd) - 1;

 //increment bit location and word count

 bitLocation += bitLength;

 wc++;

};

Ulyssix Technologies, Inc.

7

Data Acquisition Calculations

A block of data is processed immediately when it arrives from the Ulyssix PCM

hardware. Each block of data contains Packed Words * Block Size * 4 bytes. The most

computational efficient way to extract Decom Parameters from the block of data is to use

direct memory addressing of the data via pointers.

The data structure for a Decom Parameter is composed of the Commutation Type,

Interval, Frames, and a List of Samples. Each Sample has a Word Number, Minor Frame

Number, and Sample Number. The Decom Parameter should be defined by the user and

saved to a file before data acquisition. The data structured below are in pseudocode:

class Sample

{
 int WordNumber; //number in Variable Bits per Word table

 int MFrameNumber; //minor frame number

 int SampleNumber; //number of sample starting at 1

}

//create an object for a parameter

class Param

{
 Comm; //commutation type

 int Interval;

 int Frames;

 int Length //word length in bits

 ulong mask; //bit mask based on word length

 List<Sample> Samples;

}

//a list of parameters

List<Param> ParamList;

The following pseudocode steps through each parameter and moves the pointer to

the location of each occurrence of the parameter in the data block. Then the methods

GetParamValue and GetParamTime extract the binary value and time stamp, in

microseconds, for the Decom Parameter from the data block. These two methods are

discussed later in the paper.

int dataSize = BlockSize*PackedWords*4; //bytes in a data block

byte* pStartBlock = dataBlock; //pointer to start of data block

ulong Time; //time stamp in BCD from TAD header

int fCount; //value of frame counter from TAD header

//extract the time stamp and frame counter from first header in block

void ConvertHeader(pStartBlock, out Time, out fCount);

foreach(p in ParamList)

{
 byte* pBlock = pStartBlock; //create pointer that can move from original position

 int sampleInit = 0; //Initial sample number - 0 for all but Random Commutation

 long mfIncr = PackedBytes; //Minor frame increment in number of byes

 uint tsBitCount=0; //bits from first bit in minor frame to calculate time

Ulyssix Technologies, Inc.

8

 //if commutation does not occur in every minor frame, move pointer to minor frame with data

 if (p.Comm == Sub or Random)

 {
 mfIncr = PackedBytes * p.Frames

 //move to sub frame that has an instance of parameter p

 if (fcount < p.Samples[0].MFrameNumber)

 pBlock += (p.Samples[0].MFrameNumber - fCount) * PackedBytes;

 else
 pBlock += (p.Interval - MOD(fCount - p.Samples[0].MFrameNumber, p.Interval)) *

PackedBytes;

 //if pBlock is greater than the DataSize skip out of the loop

 if ((pBlock < pStartBlock) or (pBlock - pStartBlock > DataSize))

 continue;

 }

 //step through each minor frame in the data block

 for (i = p.Samples[0].MFrameNumber; i < BlockSize; i =+ p.Interval)

 {
 //ensure that the pointer location is inside the data block

 if ((pBlock < pStartBlock) or (pBlock - pStartBlock > DataSize))

 pBlock = pStartBlock;

 //get time stamp and frame count for new minor frame

 ConvertHeader(pBlock, out Time, out fCount);

 //Random Commutation word position changes every minor frame - do calculation every minor

 if (p.Comm == Random)

 {
 //step through each sample and set sampleInit to lowest Sample Number

sampleInit = int.Max; //set samplerInit to max and then loop finds lower values

 foreach(sample in p.Samples)

 {
 //if sample is not in this minor frame, skip rest of loop

 if (sample.MFrameNumber != fCount)

 continue;
 //find lowest sample number in this minor frame

 if(sample.SampleNumber < sampleInit)

 sampleInit = sample.SampleNumber - 1;//SampleNumber start at 1 - frame count at 0

 }
 //if sampleInit is not changed, set to 0

 if (sampleInit == int.Max)

 sampleInit = 0;

 }

 //step through the samples and extract value and time for the parameter

 for (s = sampleInt; s < p.Interval; s++)

 {
 //get the parameter value and time stamp

 RawValue = GetParamValue(pBlock, sample, fCount, p, out tsBitCount);

 TimeStamp = GetParamTime(Time, tsBitCount);

 }

 //move the pointer to the next minor frame

 pBlock += mfIncr;

Ulyssix Technologies, Inc.

9

 }

}

The method GetParamValue takes the pointer and sample number and extracts the

raw binary value from the data block using the Pre-Acquisition Calculations from the

Variable Bits per Word table. A 64-bits unsigned integer is extracted from the data block

via a pointer. To convert the 64-bits to the Decom Parameter’s raw binary value, the 64-

bit unsigned integer is bit shifted and then bitwise Boolean AND with a bit mask. At the

end of this method, the raw binary value can be converted to LSB or to other data types.

These binary manipulations are widely available and not included in this document.

ulong GetParamValue(byte* point, int sample, int frameCount, Param pc, uint* bitcount)

{
 ulong frameWord = 0; //used to hold raw binary value for output

 ulong* startP; //pointer to data location for param or 1st part of LE param

 ulong* endP; //pointer to data location for 2nd part of Little Endian param

 int wnum; //word number

 foreach (s in pc.Samples)

 {
 //set word num for diff comm types

 if (pc.Comm == RandomNormal)

 {
 //continue if requested sample does not match the sample number in the current param sample

 if (sample != s.SampleNumber - 1) //sample counts from 0 and SampleCount from 1

 continue;
 wnum = s.WordNumber;

 }
 else if (pc.Comm == Random)

 {
 //continue if minor frame count does not match minor frame number in current param sample

 if (framecount != s.FrameNumber)

 continue;
 //continue if requested sample does not match the sample number in the current param sample

 if (sample != s.SampleNumber - 1) //frame counts from 0 and SampleCount from 1

 continue;
 wnum = s.WordNumber;

 }

 else
 wnum = s.WordNumber + pc.Interval*sample;

 //ensure that word num is a valid word number

 if (wnum < Words.Length)

 {
 //move pointer for 64-bit unsigned word location and set frameWord value

 startPtr = point + 12 + Words[s.WordNumber].StartByte;

 frameWord = *startPtr;

 }

 //if Start <= End then the word is not affected by Little Endian byte reorg

 if (Words[s.WordNumber].StartByte <= Words[s.WordNumber].EndByte)

 {

Ulyssix Technologies, Inc.

10

 //This is our param value! – shift bits and use mask to keep only desired bits

 frameWord = (frameword >> Words[s.WordNumber].Offset) &

Words[s.WordNumber].Mask;

 }
 //else word is affected by Little Endian byte reorg

 else

 {
 //create second pointer for the Little Endian split word

 ulong* endPtr = point +12 + Words[s.WordNumber].StartByte;

 ulong frameWordEnd = *endPtr;

 //use mask to only keep the bits of interest and shift bits to desired location

 frameWordStart = (frameWord & Words[s.WordNumber].MaskStart) >>

Words[s.WordNumber].Offset;

 frameWordEnd = (frameWordEnd & Words[s.WordNumber].MaskEnd) << (pc.Length –

Words[s.WordNumber].LengthEnd);

 //combine start and end - this is our param value!

 frameWord = frameWordStart | frameWordEnd;

 }

 //get the number of bits from Frame Sync Pattern to calc time stamp

 *tsBitCount = Words[s.WordNumber].TotalBits;

 //at this point LSB and Data Conversion math should occur if needed!

 return frameWord;

 }

}

The method GetParamTime computes the time stamp for the Decom Parameter.

It begins by converting the Time Header from BCD to microseconds. The Time Header

is the time at the last bit of the minor frame. To calculate the time stamp for the Decom

Parameter, the time delta from the Decom Parameter to the end of the minor frame is

needed. The time delta is calculated by taking the number of bits from the Decom

Parameter to the end of the minor frame, dividing by the bit rate, and then converting

from seconds to microseconds. The Decom Parameter time stamp is the Time Header, in

micro seconds, minus the time delta.

ulong GetParamTime(ulong Time, ulong tsBitCount)

{
 ulonog usTime = 0; //holds the time stamp for the param

 //convert time header from BCD to Binary

 ulong usecs, msecs, secs, mins, hours, days;

 usecs = (pMFHeader->TimeWords >> 32 & 0xf) + (10 * ((pMFHeader->TimeWords >> 36) & 0xf))

+ (100 * ((pMFHeader->TimeWords >> 40) & 0xf));

 msecs = ((pMFHeader->TimeWords >> 44) & 0xf) + (10 * ((pMFHeader->TimeWords >> 48) &

0xf)) + (100 * ((pMFHeader->TimeWords >> 52) & 0xf));

 secs = ((pMFHeader->TimeWords >> 56) & 0xf) + (10 * ((pMFHeader->TimeWords >> 60) & 0xf));

 mins = ((pMFHeader->TimeWords) & 0xf) + (10 * ((pMFHeader->TimeWords >> 4) & 0xf));

 hours = ((pMFHeader->TimeWords >> 8) & 0xf) + (10 * ((pMFHeader->TimeWords >> 12) & 0xf));

 days = ((pMFHeader->TimeWords >> 16) & 0xf) + (10 * ((pMFHeader->TimeWords >> 20) & 0xf))

+ (100 * ((pMFHeader->TimeWords >> 24) & 0xf));

Ulyssix Technologies, Inc.

11

 //combine the time to get total microseconds

 usTime = (UInt64)(days * 86400000000) + (hours * 3600000000) + (mins * 60000000) +

 (secs * 1000000) + (msecs * 1000) + usecs;

 //calculate the time to the first bit in the Decom Param

 if (usTime > 0)

 //decrement usTime by bits from end of the minor frame div bit rate converted to uS

 usTime - = (ulong)(1/BitRate * 1.0e6 * (BitsPerMinorFrame - tsBitCount));

 return usTime;

}

Conclusion

This paper discussed an implementation for software decommutation of telemetry

data based on the TAD format. Example pseudocode demonstrates extracting IRIG 106-

15 commutation types as well as non-IRIG commutation types. Special consideration is

given to a computationally efficient solution to Little Endian byte order data transfer.

The example pseudocode lays out a starting point for a custom software decom that is

approachable and flexible. Each specific telemeter commutation has its own unique

challenges and requires customization to provided pseudocode.

References

IRIG 106-15, Chapter 4 Pulse Code Modulation Standards

http://www.irig106.org/docs/106-15/chapter4.pdf

TarsusHS User’s Manual, Appendix B Archive Data Files Explained

http://www.ulyssix.com/#!brochures-and-manuals/cwr9

http://www.irig106.org/docs/106-15/chapter4.pdf
http://www.ulyssix.com/#!brochures-and-manuals/cwr9

