
Tarsus3 / Tarsus4 and Bald Eagle RF / Bald Eagle RF4 User's Manual

About this Manual

Conventions

Screen Instructions

ALTAIR software screens are shown throughout the manual. The screens are shown as graphical images with callouts on the left and right sides and lines pointing to specific features. The callouts indicate features and controls that are normally not explained in the step-by-step instructions for the screen.

Caution Notes

The caution sign is used throughout the manual to help clarify operational procedures and result from operations that may not be intuitively clear. The intent is to save the user time and eliminate frustration during the setup and operation of the Ulyssix system.

Special Features

Specific features are advanced options that the Ulyssix engineers have developed to help customers solve complex problems, minimize setup problems, help in troubleshooting, and bring PCM equipment to the forefront in technology. Specific features are indicated throughout the manual by the light bulb icon.

Menus Paths

Menus Paths are hierarchal commands used to open windows or perform commands. Menu Paths are a multi-step process of selecting the top-level menu, sub-menu, and subsub-menus. The multi-step menu process is used throughout the ALTAIR software and throughout this manual and is referred to as the menu path. All references to menu paths are indicated by **Bold Italic** text and each step is separated by the back-slash character.

Table of Contents

Cha	apter 1 Introduction14			
1.1	Overview of Tarsus3 / Tarsus4 Hardware14			
1.2	2 An Overview of ALTAIR Software Suite 18			
1.3	Spe	cifications	. 19	
1.4	Wa	rranty	. 25	
1.5	Rep	pair Service Charges		
Cha	pter 2	Installation	. 26	
2.1	•	tem Requirements		
2.2		TAIR Software and Ulyssix Driver Installation		
	2.2.1	Ulyssix Driver Installation		
	2.2.2	Installing ALTAIR Software		
	2.2.3	Power Cycling Guidelines		
2.3		duct Identification		
	2.3.1	Model Number		
	2.3.2	Serial Number		
2.4		dware Setup		
2.5	Har	dware Installation		
	2.5.1	Adding Cards to an Existing System		
	pter 3	Configuring Hardware for Use		
3.1		nnecting to the Hardware		
	3.1.1	Tarsus3 / Tarsus4-02 cPCI or PCIe Cable		
	3.1.2	Tarsus3 / Tarsus4-01 cPCI or PCIe Cable		
3.2		ntifying Hardware Status		
	3.2.1	LED Indicators		
	3.2.2	Bit Sync Lock LED Indicator		
	3.2.3	Tarsus3 / Tarsus4 LED ID Indicator		
	pter 4	Configuring ALTAIR Software		
4.1		roducing the ALTAIR Main Screen		
	4.1.1	Toolbars		
	4.1.2	Hardware Explorer Window		
	4.1.3	Parameter View		
	4.1.4	Display Properties Window		
	4.1.5	The Hardware Status Bar		
	4.1.6	Events Window		
	4.1.7	Displaying and Hiding Toolbars and Docking Windows		
	4.1.8	Moving Toolbars and Docking Windows		
4.2		TAIR Lock Windows		
4.3		Management		
4.4		afiguring the Bit Sync		
4.5		offiguring the Frame Sync		
4.6		ifiguring the Sub-Frame Sync		
4.7		nfiguring the DecomDefining the Frame Format Indicator	.73	
	4 / I	Defining the Brame Bormat Indicator	73	

	4.7.2	Defining the PCM Frame	74
	4.7.3	Auto Generate Parameters	
	4.7.4	Asynchronous Embedded Streams	76
	4.7.5	Creating Decom Parameters	83
	4.7.6	Word Concatenation	
	4.7.7	PCM Frame Tool	93
	4.7.8	Decom Parameter Import and Export	
	4.7.9	Configuring Data Processing	
	4.7.10		
4.8	Con	ofiguring the IRIG Time	
4.9	Con	figuring the Simulator	106
4.10	Con	figuring the Archive	111
4.11	Con	figuring the Receiver	113
	4.11.1	Receiver Setup Window	113
	4.11.2	Receiver Waveform Display	116
	4.11.3	Receiver Waterfall Display	119
	4.11.4	Receiver Status Words	119
Cha	pter 5	Using ALTAIR Software	121
5.1	Disp	play Pages	121
5.2	Disp	play Windows	121
5.3	Intr	oducing Data Displays and Properties	122
	5.3.1	Display Toolbar Buttons	125
	5.3.2	Using Display Properties	126
5.4	Usir	ng the Bit Sync Displays	127
	5.4.1	Waveform Display	127
	5.4.2	Eye Diagram Display	128
5.5	Usiı	ng the Frame Sync Displays	130
	5.5.1	Using the Frame Dump Data Display	130
	5.5.2	Using the Frame Sync Statistics Display	
5.6	Usiı	ng the Decom Displays	
	5.6.1	Using Decom Data Displays	
		Using Time Displays	
		Using Display Pages	
5.7		ng the Simulator	
5.8	Usiı	ng Archive	
	5.8.1	Recording	
	5.8.2	Analyze Mode	
	5.8.3	Data Export	
	5.8.4	Data Quality Metric	
5.9	UDI	P Receiver	
	5.9.1	Configuring ALTAIR to use the UDP Receiver	
	5.9.2	UDP Receiver GUI	
_	5.9.3	Using ALTAIR with the UDP Receiver	
5.1 0		nerating Reports	
_	5.10.1	Printing Screens	
5.11	Too	ls Menu	178

	5.11.1	Card Info	178
	5.11.2	Diagnostic	179
	5.11.3	Flash Storage	179
5.12	RPI	O Programming	181
Cha	pter 6	Licensed Options	183
6.1	Lice	ense Management	184
6.2	Vite	erbi Decoding and Forward Error Correcting Option	185
	6.2.1	Viterbi Decoding in the Bit Sync	
	6.2.2	Viterbi in the PCM Simulator	186
6.3	Cha	pter 10 Option	
	6.3.1	Recording Chapter 10 File	
	6.3.2	Playing Chapter 10 File Through the Archive Simulator	
	6.3.3	Publishing Chapter 10 UDP	
	6.3.4	Receiving Chapter 10 UDP	
	6.3.5	IRIG106 Chapter 6 Recorder and Reproducer Command and Control	
6.4	UD!	P Frame Publisher Option	
	6.4.1	UDP Frame Publisher	
	6.4.2		
6.5	LQ	Tester Option	
	6.5.1	Initiating the LQ Tester	
	6.5.2	LQ Tester Setup Form	
	6.5.3	BERT Run Form	
	6.5.4	Latency Test Form	
6.6		232 Parameter Output (UART)	
	6.6.1	RS232 Setup	
	6.6.2	, will Climinate and Electrical Climinate and Climinate an	
6.7		SD Audio Output Option	
6.8		l Time Simulator Option	
6.9		G Time Output Option	
6.10		d Eagle RF / Bald Eagle RF4 Transmitter	
	pter 7	Appendix A – Installation Troubleshooting/Problems	
7.1		dware Detection	
		Appendix B – Archive Data Files Explained	
8.1		a Storage Format	
8.2		Header Definition	
0 2	8.2.1	File Header Example	
8.3		or Frame Header Definition	
8.4		A Post of the State of the Stat	
	8.4.1 8.4.2	Archive Data 32-Bit Sync 16-Bit Data	
Cha		Archive Data 24-Bit Sync 12-Bit Data	
	ipter 9	Appendix C – Tarsus3 / Tarsus4 and Bald Eagle RF / Bald Eagle Panels	
	nes and opter 10		
	ipter 10 ipter 11	• • • • • • • • • • • • • • • • • • • •	
	ipter 11 ipter 12		
	-	gramming	

Chapter 13	Appendix G – FEC and Viterbi Theory	247
12.2.2	Windows 7 Display Issues	244
12.2.1	Windows 10 Display Issues	243
	oleshooting Display Issues	
12.1.2	Programming All Cards	242
12.1.1	Programming a Single Card	241

Table of Figures

Figure I – Device Manager with Jungo Driver	
Figure 2 – Ulyssix Driver Installer Welcome Screen	30
Figure 3 – Windows Security Screen	30
Figure 4 – Ulyssix Driver Completed Screen	
Figure 5 – Device Manager with a Successful Ulyssix Driver Installation	31
Figure 6 – Location to Extract Files	32
Figure 7 – SlimDX Install Wizard	33
Figure 8 – SlimDX Install Complete	33
Figure 9 – ALTAIR Installer Welcome Wizard	34
Figure 10 – Installer Destination Folder	
Figure 11 – Ready to Install the Program	35
Figure 12 – ALTAIR Installation Complete	36
Figure 13 – ALTAIR Installer Successfully Completed	
Figure 14 – ALTAIR Version Numbers	37
Figure 15 – Tarsus3 / Tarsus4 cPCI Product Identification	39
Figure 16 – Tarsus 4 PCIe Product Identification	
Figure 17 – Serial Number	
Figure 18 – Tarsus3 / Tarsus4 Rear Panel View of LED Indicators	46
Figure 19 – LED Indicator Card Configuration Examples	
Figure 20 – ALTAIR Main Screen	
Figure 21 – Main Toolbar	50
Figure 22 – Displays Toolbar	50
Figure 23 – Bit Sync Toolbar	
Figure 24 – Frame Sync Toolbar	50
Figure 25 – Decom Toolbar	51
Figure 26 – Simulator Toolbar	
Figure 27 – Time Toolbar	51
Figure 28 – Archive Toolbar	51
Figure 29 – Playback Toolbar	52
Figure 30 – Features Toolbar	52
Figure 31 – Hardware Explorer	53
Figure 32 – Add/Remove Cards	54
Figure 33 – Parameter View Params and Status Tabs	56
Figure 34 – Parameter View Async Embedded	
Figure 35 – Parameter Window	57
Figure 36 – Parameters Window Right Mouse Click	58
Figure 37 – Display Properties	58
Figure 38 – Status Section of Main Screen	
Figure 39 – Events Window	61
Figure 40 – Optional Events	61
Figure 41 – View Menu	62
Figure 42 – Docking Helper	63
Figure 43 – Lock Checkbox	64

Figure 44 – File Menu	65
Figure 45 – Bit Sync Setup	66
Figure 46 – Frame Sync Setup	68
Figure 47 – Sub-Frame Sync Setup	71
Figure 48 – Decom Setup	
Figure 49 – Decom Data Configuration for a Single Format	74
Figure 50 – Frame Definition Setup	
Figure 51 – Default Decom Parameter Settings	76
Figure 52 – Async Embedded Setup Window	77
Figure 53 – Async Embedded Stream Control	78
Figure 54 – Async Embedded Random Normal and Random Word Entry	79
Figure 55 – Async Embedded Frame Sync Window	79
Figure 56 – Async Embedded Sub-Frame Sync Window	81
Figure 57 – Async Embedded Decom Window	82
Figure 58 – Parameters Setup	83
Figure 59 – Parameter Edit/Add	84
Figure 60 – Normal Commutation	85
Figure 61 – Super Commutation, Interval 3 Words	85
Figure 62 – Sub-Commutation, Interval 2 Frames	85
Figure 63 – Random Commutation	85
Figure 64 – Random Normal Commutation	86
Figure 65 – FFI	86
Figure 66 – Example of a 32-bit Parameter Created from Two 16-bit PCM Words	87
Figure 67 – Parameter Edit/Add Random Commutation	
Figure 68 – Example Mapping Table for Random Normal Commutation	89
Figure 69 – Example Mapping Table for Single Line Right Word Concatenation	91
Figure 70 – Example Mapping Table for Single Line Left Word Concatenation	
Figure 71 – Example Mapping Table for Multi Line Word Concatenation	92
Figure 72 – PCM Frame Tool Launched from Decom Toolbar and Decom Setup For	rm 93
Figure 73 – Decom Parameter Import / Export in the Decom Setup Window	94
Figure 74 – Initial Data Process Setup Screen	96
Figure 75 – Formula Editor in the Process Edit Window	97
Figure 76 – C# Function Editor in the Process Edit Window	
Figure 77 – Process Error Window	
Figure 78 – Decom Outputs Setup	102
Figure 79 – Single Bit DAC Output	103
Figure 80 – Time Setup	104
Figure 81 – Simulator Setup	106
Figure 82 – Edit Simulator Channel Form	108
Figure 83 – Archive Simulator	109
Figure 84 – Archive Setup	111
Figure 85 – Bald Eagle RF / Bald Eagle RF4 Receiver Standard Settings	
Figure 86 – Bald Eagle RF / Bald Eagle RF4 Receiver Advanced Settings	
Figure 87 –Receiver Waveform Icon	
Figure 88 – Receiver Waveform Frequency Display	
Figure 89 – Receiver Waveform Time Display	

Figure 90 – Receiver Waveform Display Properties	118
Figure 91 –Receiver Waveform Display Primary Cursor	
Figure 92 – Receiver Waveform Display Secondary Cursor and Delta Cursor	
Figure 93 –Receiver Waterfall Icon	
Figure 94 – Receiver Waveform Display Secondary Cursor and Delta Cursor	
Figure 95 – Display Window options in the Display Menu	
Figure 96 – Selecting the Display Page for a Display Window	
Figure 97 – Display Window	
Figure 98 – Data Display with Title Bar	
Figure 99 – Data Display without Title Bar	
Figure 100 – Example of a Properties Window	
Figure 101 – Bit Sync Input Waveform Time Display	
Figure 102 – Bit Sync Input Waveform FFT Display	
Figure 103 – Eye Diagram	
Figure 104 – Frame Dump	
Figure 105 – Frame Sync Lock Statistics	
Figure 106 – Bar Graph Data Display	
Figure 107 – Dial Display Properties Window	
Figure 108 – Dial Data Display	
Figure 109 – Dial Data Display Showing Limits	
Figure 110 – Two 180 Degree Dial Displays	
Figure 111 – Discrete Individual Bits	
Figure 112 – Discrete Display Combined Bits	
Figure 113 – Discrete Setup	
Figure 114 – Icon List.	
Figure 115 – Image Display	
Figure 116 – Lamp Setup Form	
Figure 117 – Lamp Setup Example	
Figure 118 – Lamp Displays with and without Parameter Name and Value	
Figure 119 – Log Displays with and without I arameter Ivanic and varieties	
Figure 120 – Log Display Properties	
Figure 121 – Lookup Setup Window	
Figure 122 – Lookup Display and a Meter Display	
Figure 123 – Parameter Meter Display	
Figure 124 – Embedded Time Meter Display	
Figure 125 – Text Meter Display	
Figure 126 – Add Additional Decom Parameter to Meter	
Figure 127 – Add Additional Decom Farameter to Meter. Figure 127 – Meter Pop Up Menu	
Figure 128 – Rectangle Display with and without Title	
Figure 129 – Rectangle Display Three Rectangle Types	
Figure 130 – Scope/FFT Data Display	
Figure 131 – Shades of Gray Display: Sinewave Eight Points per Period	
Figure 132 – FFT Display: Sinewave Eight Points per Period	
Figure 133 – Shades of Gray: First Cursor	
Figure 134 – Shades of Gray: Second Cursor	
Figure 135 – Shades of Gray: Delta Cursor	148

Figure 136 – Three Display Property Windows for the Strip Chart Display	149
Figure 137 – Strip Chart Decom Parameter Right Mouse Click Menu	150
Figure 138 – Strip Chart Display	150
Figure 139 – Strip Chart Plot with Two Parameters	151
Figure 140 – Strip Chart Cursor	151
Figure 141 – Strip Chart Second Cursor	152
Figure 142 – Strip Chart Delta Cursor	152
Figure 143 – Tabular Data Display	153
Figure 144 – Tabular display columns	153
Figure 145 – Textbox Display	154
Figure 146 – Textbox Display	154
Figure 147 – XY Chart Display using LineMarker	155
Figure 148 – 3D Model Data Display	
Figure 149 – Time Display	156
Figure 150 – Embedded Time Setting in Meter Type Property	
Figure 151 – Embedded Time Parameter	158
Figure 152 – Embedded Time Word Setup	
Figure 153 – Display Page Save As	
Figure 154 – Archive Recording Status Window	
Figure 155 – Analyze Plackback Files Window	
Figure 156 – Playback Toolbar	
Figure 157 – ALTAIR Export Step 1, Archive Type	
Figure 158 – ALTAIR Export Step 2, Archive File Selection	
Figure 159 – ALTAIR Export Step 3, Select Data Format	
Figure 160 – ALTAIR Export Step 4, Parameters to Export	
Figure 161 – ALTAIR Export Step 5, Time Selection	
Figure 162 – ALTAIR Export Step 5, Destination File	
Figure 163 – CSV Export File Example	
Figure 164 – Data Quality Metric Window	
Figure 165 – Data Quality Metric Output Files	
Figure 166 – Data Quality Metric Summary CSV File	
Figure 167 – Data Quality Metric Frame Lock Status PNG File	
Figure 168 – UDP Receiver	
Figure 169 – Print Type Selection Form	177
Figure 170 – Card Info	
Figure 171 – Save Diagnostic File	
Figure 172 – Flash Storage	
Figure 173 – Bit Sync Setup Window Displaying Viterbi Features	
Figure 174 – User Specified Bit Rate and Viterbi Bit Rate	
Figure 175 – Simulator Setup Displaying FEC Features	
Figure 176 – Ch10 Record Settings Form	
Figure 177 – Archive Record and Archive Stop Toolbar Buttons	
Figure 178 – Chapter 10 File Window	
Figure 179 – Simulator Setup Window Chapter 10 Archive Simulator	
Figure 180 – Chapter 10 UDP Publisher Toolbar Icon	
Figure 181 – Ch10 UDP Publisher Window	

Figure 182 – Ch10 UDP Publisher Log Window	193
Figure 183 – Ch10 UDP Rx Window	195
Figure 184 – Ch10 UDP Packet Log	196
Figure 185 – ALTAIR Options Ch10 Settings	197
Figure 186 – Ch10 TCP Listener Window	197
Figure 187 – UDP Frame Publisher Setup Form	201
Figure 188 – UDP Parameter Publisher Setup Form	
Figure 189 – LQ Tester Startup	
Figure 190 – LQ Tester Transmission Setup Form	
Figure 191 – 1024B Pattern	
Figure 192 – 11PN Pattern	
Figure 193 – 11PN_2048 Pattern	
Figure 194 – 15PN pattern	
Figure 195 – 15PN Baker pattern	
Figure 196 – 256B Pattern	
Figure 197 – 25TD Pattern	
Figure 198 – GU Pattern	211
Figure 199 – LQ Tester Receiving Setup Form	
Figure 200 – BERT LQ Results Form	
Figure 201 – Latency Test Form	214
Figure 202 – RS232 Setup Button	
Figure 203 – RS232 Setup Form	215
Figure 204 – RS232 Parameter Display	
Figure 205 – Parameter Edit/Add Form	
Figure 206 – Audio Output Form	
Figure 207 – Simulator Form with Real Time Simulator Licensed Feature	220
Figure 208 – Simulator Channel Control Form	221
Figure 209 – Channel Control Form Value of 0	222
Figure 210 – Channel Control Form Value of 6553	
Figure 211 – Channel Control Form Value of -16384 and Low Limit Violation	
Figure 212 – Channel Control Form and Oscillation in the Strip Chart	
Figure 213 – Time Setup form with IRIG Time Output Controls	
Figure 214 – Archive Simulator form with IRIG Time Output Controls	225
Figure 215 – Bald Eagle RF / Bald Eagle RF4 Transmitter Setup	
Figure 216 – Device Manager Jungo Driver	
Figure 217 – Device Manager Ulyssix Driver	
Figure 218 – Archive File Header Example	232
Figure 219 – Archive Data Header Example	
Figure 220 – Archive Data Example	234
Figure 221 – 12-bit Archive example	234
Figure 222 – 12-bit Frame Sync Archive Example	
Figure 223 – Tarsus3 / Tarsus4 -01/-02 Pigtail Connector	
Figure 224 – Tarsus3 / Tarsus4 Panel Connectors in a cPCI Chassis	
Figure 225 – Tarsus3 / Tarsus4-02/-01 Connector Diagram Part 1	
Figure 226 – Tarsus3 / Tarsus4-02/-01 Connector Diagram Part 2	
Figure 227 – Bald Eagle RF / Bald Eagle RF4 Panel	

Figure 228 – Flash Burn Utility – Single Card Mode	241
Figure 229 – Flash Burn Utility – All Cards Mode	242
Figure 230 – FlashBurn Windows 10 Override high DPI Scaling Behavior	244
Figure 231 – Windows 10 Display Scale and Layout Properties	244
Figure 232 – FlashBurn Windows 7 Disable Display Scaling on high DPI Settings	245
Figure 233 – FlashBurn Windows 7 Display Scaling	246
Figure 234 – FlashBurn Windows 7 DPI Scaling	
Figure 235 – Forward Error Correction Block Diagram	

Tables

Table 1 – Minimum System Requirements Table	26
Table 2 – Tarsus3 / Tarsus4 Models	
Table 3 – Tarsus3 / Tarsus4-02 Hardware Connections	44
Table 4 – Tarsus3 / Tarsus4-01 Hardware Connections	46
Table 5 – Tarsus3 / Tarsus4 ID Table	47
Table 6 – Download	55
Table 7 – Example Data Processing Formulas	99
Table 8 – Archive Data Header Definition	232

Chapter 1 Introduction

1.1 Overview of Tarsus3 / Tarsus4 Hardware

The Digital Signal Processing (DSP) based Tarsus3 / Tarsus4 PCM Processor Board is a multi-mode PCM processor board that contains a DSP implemented digital Bit Sync/Frame Synchronizer (Bit Sync/Frame Sync), IRIG Class II PCM decommutator (Decom), PCM simulator (Simulator), IRIG Time Code Reader, and optional Viterbi Decoder designed in the cPCI or PCIe (Tarsus4 PCIe only) form factor. By using state-of-the-art DSP dedicated Field Programmable Gate Arrays (FPGA), the Tarsus3 / Tarsus4 is the most flexible and technically advanced PCM Processor board available. The functional blocks (Bit Sync, Decom, Simulator, etc.) of the Tarsus3 / Tarsus4 can be used individually, or as a seamless combined PCM processing system. All the circuitry for the PCM Processor Board is located on a single PCB, eliminating the need for any mating daughter or add-on cards.

By using DSP based algorithms including Finite Impulse Response (FIR) filters, multistage recursive decimation filters, Modulated Numerically Controlled Oscillators (MNCO), and DSP implemented Phase-Locked Loops (PLL), the Tarsus3 / Tarsus4 Bit Synchronizer requires no calibration or tuning. A user-friendly Windows GUI (Graphic User Interface) based software is supplied for easy product installation into a Windows based host computer system. DSP algorithms are implemented in state-of-the-art FPGAs allowing for rapid enhancements or customization. There are two independent input serial bit stream inputs that are user selectable and received in analog form, conditioned with a digital auto gain control circuit, and then fed into a sophisticated anti-alias filter prior to a 14-bit digitizer.

The Tarsus3 / Tarsus4 Decommutator supports all the IRIG Class II features, including variable word length from 3-64 bits per channel, format switching, parameter concatenation, and asynchronous embedded formats. The input serial bit stream to the Decom is either TTL or RS-422 differential levels with input data rate capability from 1 bps to 40 Mbps for NRZ-L/M/S, RNRZ-L and 1 bps to 20 Mbps for Bi- Φ L/M/S. Two on board 12-bit DACs are standard features that give the Tarsus3 / Tarsus4 standalone word selection analog capability. The word-by-word parallel output of the Tarsus3 / Tarsus4 is available to the user in different forms through a high-speed memory buffering circuit for direct storage to the host computer for post Decom analysis and through different Windows GUI displays, including oscilloscope/strip chart, FFT spectral, numeric, bar graph, and dials. The PCM Simulator has the same IRIG Class II frame and word features as the Frame Sync and Decom with user definable waveforms or fixed data values on a word-per-word basis.

The Tarsus3 / Tarsus4 contains an IRIG Time Code Reader section allowing the user to embed external or internally generated time into the output archive data file of the Decom.

The Tarsus3 / Tarsus4 has an optional receiver daughter card. The Tarsus3 / Tarsus4 with the optional receiver daughter card is referred to as the Bald Eagle RF / Bald Eagle RF4. The receiver includes C Band, S Band, L Band, Extended P Band, P Band, and IF frequency ranges. The IF bandwidth is software programmable from 20kHz to 56MHz.

The Bald Eagle RF / Bald Eagle RF4 has an optional transmitter. The transmitter covers C Band, S Band, L Band, Extended P Band, P Band, and IF frequency ranges.

Bit Sync Features:

- Full Bit Sync designs using all DSP filter algorithms in FPGA technology for maximum performance capability.
- TTL and RS422 Level driven Inputs.
- Accepts all IRIG PCM code types including: NRZ-L/M/S, RNRZ-L, RZ, Bi-Φ L/M/S or RNRZ 11/15, and program selectable.
- Bit Sync programmable input rates from 1 bps to 40 Mbps for NRZ-L/M/S, RNRZ-L, RZ, and 1 bps to 20 Mbps for Bi-Φ L/M/S.
- Input signal level from 30 mVpp to 10 Vpp.
- Impedance software selectable (50, 75, or 10k Ohm).
- Less than 1 dB theoretical bit sync BER performance for bit rates up to 25 Mbps, less than 2 dB theoretical from 25 Mbps to 33 Mbps, and less than 2.7 dB to theoretical to 40 Mbps.
- Programmable loop bandwidth from 0.01% up to 3.0%.
- Digital bit sync algorithm update to a full 16-bit second order Costas Loop linear implementation for improved FM/PM jitter fluctuation performance. The jitter peak rejection is specific to the loop bandwidth setting. The jitter rejection is based on the jitter frequency versus the loop bandwidth setting. Jitter rejection is greater than five times the loop bandwidth at 250 Hz, twenty times at 1000 Hz, and forty times at 2000 Hz.
- Two independent sets of outputs (Clock and Data).
- One PCM code converter (uses second output).
- AGC Freeze Auto Gain Control settings are "frozen" to decrease resync acquisition time upon incidence of bit lock loss.
- Diagnostic displays.
- All IRIG PCM code type selectable PCM encoder output capability.

Frame Sync Features:

- Accepts internal signals from TTL Level single ended, RS-422 differential, or direct from Bit Sync section of the PCM Processor, NRZ-L, and clock.
- Up to 16.7 Mb frame size.
- Frame sync patterns from 16 to 64 bits with all IRIG patterns stored for use or user custom frame sync patterns.
- Allows frame sync bit masking.
- Allows for 50%-bit slips of the entered minor frame size up to 10,000 bit slips (helpful if frame size is unknown).
- Allows sync errors.

- Sync Criteria is selectable.
- Supports Burst Mode:
 - o Eliminates losing the first minor frame.
 - o Sync criteria is ignored after as first frame sync pattern found.
- Supports Data in Search Mode:
 - Outputs data without frame sync lock.
 - o Eliminates data loss.
- Supports SFID and FCC.
- Frame Dump display allows quick look at the data coming through frame sync.

Decom Features:

- Supports all IRIG Class II Decom features including variable word length 3 to 64-bits variable from channel to channel, frame format identifier (FFI) format switching, and random commutation.
- Supports up to eight Asynchronous Embedded Streams.
- Allows frame sizes up to 16.7 Mb.
- Uses Microsoft style calculator for data processing and Engineering Unit conversion.
- Various display types like strip charts, dials, meters, discrete, tabular, bar charts, 3D models, and scopes.
- Drag and drop parameters into existing displays.
- Snap to grid alignment.
- High speed data transfer of user word selected channels to the cPCI or PCIe bus for disk storage and playback.
- Supports PCM streams up to 40 Mbps.
- Simulator with user defined waveform and fixed value channels.
- On card IRIG Time-code Reader for codes A, B, G, NASA-36, and DC Input

 IRIG-B DC LS/TTL.
- Two on card DACs for selected words analog output (output two's comp or binary data squelch feature for audio output). The Tarsus4 has a total of 4 DACs, two high speed for data and 2 low speed for status values.
- User-friendly Windows GUI based software for full setup of format frame, word selection, and channel display capability.

PCM Simulator Features:

- Outputs 1 bps to 40 Mbps for NRZ-L/M/S, RNRZ-L, RZ, and 1 bps to 20 Mbps for Bi-Φ L/M/S.
- Supports all commutation types (super-, sub-, and normal).
- Built in Forward Error Correction (FEC).
- Output fixed word values or various functions using sine, square, saw tooth, and triangle waves, as well as a counter.
- Playback achieved PCM raw binary data (.TAD file) at any bit rate and codetype.

Archiving Data Features:

- Record time tagged frame synchronized PCM raw binary data to the hard drive (.TAD file).
- Play frame sync archived PCM data through the simulator and IRIG time data through DAC1 (Licensed Feature).
- Export decom data in CSV form.

Time Features:

- IRIG time code reader accepts IRIG Codes A, B, G, NASA-36, and DC Input IRIG-B DC LS/TTL.
- Output IRIG Time data in IRIG B or NASA 36 format (Licensed Feature).
- Capable of running off computer time.
- Enable freewheeling and board will interpolate time upon loss of time lock.
- Embedded time can be displayed by concatenating a parameter from all individual words:
 - Set as BCD and embedded time which will open Embedded Time Setup form.
 - Set as BCD time segments to appropriate bits of parameter.

Receiver Features (optional):

- FM, SOQPSK, BPSK, QPSK, GMSK, and Wideband FM demodulation types.
- No tuning and preventative maintenance required.
- Fully digital Demodulator for enhanced capabilities.
- C Band, S Band, L Band, Extended P Band, P Band, and IF frequency ranges.
- DSP implemented IF data bandwidth filtering from 20 kHz to 56 MHz.
- Programmable digital FIR output filter can be bypassed for higher PCM data rates.
- FPGA-based architecture for rapid enhancements and customization.
- Digitally time synchronized and sampled output data available for FFT analysis and direct capture.
- Software enabled for demodulation of PCM signals without Pre-Mod filters.

Transmitter Features (optional):

- FM, SOOPSK, BPSK, OPSK, GMSK, and Wideband FM modulation types.
- No tuning and preventative maintenance required.
- Fully digital modulator for enhanced capabilities.
- C Band, S Band, L Band, Extended P Band, P Band, and IF frequency ranges.
- FPGA-based architecture for rapid enhancements and customization.
- Software enabled Pre-Mod filter for PCM signals.
- Variable output power using a programmable attenuator. Transmitter output power from -20 dBm to -90 dBm depending on selected frequency band.

1.2 An Overview of ALTAIR Software Suite

Ulyssix hardware is controlled by the supplied ALTAIR software package. The software is a Windows based state-of-the-art setup, diagnostic, and analysis software package designed to interface with Ulyssix Technologies hardware product line.

The Windows GUI application is developed using "C#" (pronounced C-Sharp) and runs under the Microsoft .NET environment. The software uses the latest Microsoft technologies to provide a stable, high performance, and user-friendly application. The software runs in Windows 7 32-bit, Windows 7 64bit, or Windows 10 operating systems.

For customers who desire to develop their own software to interface with the Ulyssix hardware, two options are made available: a Software Development Kit (SDK) including a Windows Dynamic Link Library (DLL) or a Hardware Interface Specification.

The DLL is developed in "C++" and is used by the ALTAIR GUI application to interface with the Ulyssix hardware. The Hardware Interface Specification is a detailed document describing the hardware registers, their definitions, and how they are accessed. Its intended application is implementations for Real Time Operating Systems (RTOS) or Linux. Please contact the factory for Software Development Kit or Hardware Interface Specifications.

1.3 Specifications

Bit Synchronizer Input Specifications:		
Input Data Rate	Bit Sync programmable input tunable rates from 1 bps to 40 Mbps for NRZ-L/M/S, RNRZ-L, and 1 bps to 20 Mbps for Bi-Φ L/M/S	
Input Source	Two independent inputs (one single ended BNC, one differential Twinax)	
Input Impedance	Hi-Z/75Ω/50Ω, single ended input, software selectable	
Maximum Safe Input	± 35 VDC	
Input Signal Level	30 mVpp to 5 Vpp	
DC Input Level	+/- 5 VDC	
Input PCM Code Type Modes	NRZ-L/M/S, RNRZ-L, RZ, Bi-Φ L/M/S, program selectable (consult factory for other code types)	
Derandomizer Input	RNRZ-11/15, forward/reverse, program selectable	
Input Polarity	Normal, inverted, or auto selectable using frame sync correlator	

Bit Synchronizer Data Specifications:	
Loop Bandwidth	0.01% to 3.0%, to the programmed bit rate
Capture Range	+/-3 times of the programmed loop bandwidth
Data Tracking Range	+/-5 times of the programmed loop bandwidth
Sync Acquisition	less than 200-bits, typically 100-bits max
Bit Error Probability	Less than 1 dB to theoretical bit sync BER performance for bit rates up to 25 Mbps, less than 2 dB to theoretical from 25 Mbps to 33 Mbps, less than 2.7 dB to theoretical to 40 Mbps
PCM Encoder Output	TTL and RS422 Level driven
PCM Encoder Code Types	NRZ-L/M/S, RNRZ-L, RZ, Bi-Φ L/M/S or RNRZ 11/15, program selectable
Clock Output	0°, 90°, 180°, 270°

Frame Sync/Dec	commutator Specifications:
Input Data Rate	Up to 50 Mbps
Input Signals	TTL Level single ended, RS-422 differential, or direct from Bit Sync section of the PCM Processor, NRZ-L and clock
Word Lengths	3 to 64-bits variable from channel-to-channel
Minor Frame Length	3 to 16,777,216 bits
Major Frame Length	1 to 1024 minor frames per major frame
PCM bit word Order	MSB or LSB, word-by-word basis, program selectable
Frame Sync Pattern	16 to 64-bits
Frame Sync Location	Leading the minor frame
Frame Sync Strategy	Search-Check-Lock, programmable counts per step
Sub-Frame Sync	FCC or SFID
Sync Error Tolerance	0 to 8-bits, program selectable
Bit Slip Window	0 to 9999-bits, program selectable
Data Polarity	Normal or inverted on a channel-by-channel basis
Embedded Formats	Supports up to eight asynchronous embedded formats based on computer CPU capability
Fragmented Words	Software decommutator can combine individual bits from separate PCM words

PCM Simulator Specifications:	
Output Data Rate	1 bps to 40 Mbps for NRZ-x, RNRZ-I, or 20 Mbps for all others
Output PCM Code Types	NRZ-L/M/S, RNRZ-L, RZ, Bi-Φ L/M/S, RNRZ 11/15/, forward/reverse, program selectable
Output Signal Levels	Data and Clock, TTL, and RS422 level driven
Word Lengths	3 to 64-bits, variable
Frame Length	Same as decommutator specs
Data Words	Fixed or math functions (sine wave, triangle, square wave, sawtooth, counter) with programmable sample rate

DAC Output Specification:	
Number of Channels	2; 4 in the Tarsus4
Output Level	1 Vpp to 5 Vpp, selectable in 0.1 Vpp steps, ± 2.5V offset in 0.1 VDC steps

Time Code Reader Specifications:	
IRIG Code Types	IRIG A, B, G, NASA-36, & DC Input – IRIG-B DC LS/TTL.

Receiver Input Specifications:	
Input Frequency	C-Band 4400 to 5250 MHz
Range	S-Band 2185 to 2485 MHz
	L-Band 1420 to 1850 MHz
	Extended P-Band 500 to 1250 MHz
	P-Band 200 to 500 MHz
	IF 70 MHz
IF Bandwidth	1 kHz to 40 MHz
Diversity Combiner	Optimal Ratio and Best Source
Combiner Modes	Pre-D
Frequency Tuning Resolution	50 kHz steps
Dynamic Range	-10 dBm to -104 dBm

VSWR Ratio	2:1 typical 2.5:1 maximum
Noise Figure	5 dB typical, 8 dB maximum
Max Safe Input	+20 dBm without damage
Demodulation Modes	FM, SOQPSK, BPSK, QPSK, GMSK, and Wideband FM
Impedance	50 Ohms into SMA connectors
Spurious Rejection	>60 dBc
AGC Time Constants	0.01 msec, 0.1 msec, or 1.0 msec, selectable
AGC Modes	Automatic, Manual, Freeze
AM AGC Out	AC coupled AM AGC detector output, 50 kHz frequency response, 5 Vpp bipolar or unipolar output.
AGC DC Level Detector	DC coupled from 0 to + 3.5 VDC from min to max RF AGC attenuation

Receiver Demodulator	Specifications:
Data Rates	Up to 20 Mbps (FM and QPSK)
	Up to 10 Mbps (BPSK)
	Up to 40 Mbps (SOQPSK)
	Wideband FM data rates are limited by the signal bandwidth
Output Linearity	Less than 0.05% of the programmed full deviation bandwidth measured from best 3-point straight line
Output Harmonic Distortion	All harmonic terms are below -56 dB for single carrier sinewave modulation
Output Filtering Modes	Filter Mode: The FIR filter is programmed to be flat within 0.1 dB in the programmed passband and -60 dB attenuation at two times the programmed cutoff frequency.
	Bypass Mode: The digital and analog reconstruction filters are bypassed for maximum digital data throughput. The data frequency throughput is equal to the programmed deviation filter frequency.
Output Filter Range	Programmable from 1/64 to 1/2 times the IF Bandwidth, four-digit resolution with a total range of 100 Hz to 56 MHz.

Wide Bandwidth Signal	Software enable/disable for demodulation of PCM
Tolerant	signals without Pre-Mod filters.

Transmitter Specifications:	
Data Rates	Up to 20 Mbps (FM)Up to 10 Mbps (BPSK)
	Up to 40 Mbps (SOQPSK)
Modulation Modes	FM, SOQPSK, BPSK, QPSK, GMSK, and Wideband FM
Output Dynamic Range	-20 dB to -90 dB
Pre-Mod Filter	PCM signals have a software enabled Pre-Mod filter
Output Impedance	50 Ohms from SMA Connector
Power Range	Output power controlled by programmable attenuator from 0 dBm to -90 dBm

Tarsus3 / Tarsus4 Physical Specifications:	
	PCIe full height (110 mm) half length (168 mm)
Dimensions	cPCI 3U form factor, 100 mm height, 160 mm length, 28 mm width (not including mounting or edge connectors)
Interface Connectors	MDM-51 connector to individual BNC breakout cables (other configurations, consult factory)
Manufacturing	The design utilizes Surface Mount Technology (SMT), manufactured with robotic assembly techniques to IPC-610B Class 2 manufacturing standards
Temperature Range	Operating: 0°C to 70°C Storage: -20°C to 85°C
Power Consumption:	Less than 25 Watts total, for all supplies +3.3V 3.5 Amps +12V 0.8 Amp

Tarsus3 / Tarsus4 Receiver Card Physical Specifications:

Dimensions	100 mm height, 160 mm length, 28 mm width (not including mounting or edge connectors) (3U)
Interface Connectors	RF inputs, RF Signal Generator Outputs: SMA, Video Outputs and AGC Test points are BNC outputs from the Tarsus3 / Tarsus4 MDM-51 DAC outputs connectors
Manufacturing	The design utilizes Surface Mount Technology (SMT), manufactured with robotic assembly techniques to IPC-610B Class 2 manufacturing standards
Temperature Range	Operating: 0°C to 50°C Storage: -20°C to 60°C
Power Consumption:	Approximately 30 Watts total from all power supplies

1.4 Warranty

Ulyssix Technologies, Inc. warrants its products to be free from defects in material and workmanship under normal use and service for one year from the date of shipment to the original purchaser. The equipment must be returned, transportation prepaid to the factory, and if found to be defective, at the company's option, will be repaired or replaced free of charge, and returned transportation prepaid. If inspection by Ulyssix does not disclose any defect in material or workmanship, a Ulyssix standard repair service charge will apply. This warranty does not extend to any products that have been subject to misuse, negligence, modifications, abnormal operating conditions, or cover expendable items such as lamps, batteries, fuses, etc. Ulyssix makes no express or implied warranties beyond those described herein, and in no event will Ulyssix be responsible for consequential damages of any nature arising out of, or connected with, the use of its products.

1.5 Repair Service Charges

Please call the Ulyssix Customer Service Department at 301-846-4800 for a quotation, return authorization number, and shipping information. All units repaired will be warranted for 90 days from the date of said repair. Equipment must be shipped to the factory with transportation prepaid.

Chapter 2 Installation

2.1 System Requirements

The ALTAIR software utilizes the latest software technologies by using Microsoft .NET framework, Microsoft DirectX, and Direct3D graphics interface. The following table contains the minimum computer configuration requirements for installing and operating the Ulyssix hardware and supporting software. For optimum performance, please install the Ulyssix card into a computer that meets or exceeds these Configuration Specifications.

Parameter:	Minimum Configuration:
Processor	Intel i7 Quad Core with Hyper-Threading
RAM	4 GB or Higher for 32-bit Windows OS 16 GB or Higher for 64-bit Windows OS
Available Hard Drive Space	40 GB
Operating System	Windows 7 32-Bit (4 GB) Windows 7 or Windows 10 64-Bit (16 GB)
Power Supply	25 Watts available power per cPCI or PCIe card installed
Chassis	2 Slots are required for each Tarsus3 / Tarsus4 cPCI or PCIe card installed. An additional slot for the Bald Eagle RF / Bald Eagle RF4
Drives	CD ROM (recommended)
Video	8 GB on-board video RAM Video must support DirectX and Direct3D

Table 1 – Minimum System Requirements Table

2.2 ALTAIR Software and Ulyssix Driver Installation

The Windows based ALTAIR software runs on Windows 7 32-bit, Windows 7 64-bit, and Windows 10 64-bit operating systems. Please contact Ulyssix for questions about other Windows based operating systems.

Please install the Ulyssix driver before installing the Ulyssix cards into your computer chassis. Installing the driver first prevents possible Windows Plug and Play issues.

2.2.1 Ulyssix Driver Installation

There are three scenarios to consider when installing the Ulyssix driver. Please consider which scenario applies to your system and follow the instructions accordingly.

- 1. Upgrading from the old Jungo Driver. See **2.2.1.1 Upgrading from the Jungo Driver**.
- 2. Upgrading from a previous version of the Ulyssix Driver. See **2.2.1.2 Upgrading from a previous version of the Ulyssix Driver.**
- 3. Installing the Ulyssix Driver onto a new computer. See 2.2.1.3 Installing the Ulyssix Driver onto a new computer.

2.2.1.1 Upgrading from the Jungo Driver

Upgrading from the original ALTAIR software that used the Jungo Plug 'n Play Driver requires two steps. First, uninstall the Jungo Driver and WinDriver from your computer. Second, install the new Ulyssix Driver. Instructions for the first step are below. For the second step, please see Section 2.2.1.3 Installing the Ulyssix Driver onto a new computer.

- To remove the Jungo Driver, open the Control Panel and select the Device Manager. Expand the listing for "Jungo." There should be two entries: "Ulyssix Technologies, Inc. Tarsus PCI Card" and "WinDriver." Please see Figure 1 – Device Manager with Jungo Driver.
- 2. Using your left mouse button, highlight "Ulyssix Technologies Inc., TarsusPCI Card," then hit the right mouse button and click on "Uninstall." Check the "Delete the driver software from this device" and then hit the OK button on the Confirm Device Uninstall dialogue box.
- 3. Repeat the above steps to uninstall the "WinDriver" from the "Jungo" folder.
- 4. The Device Manager will refresh, and Jungo will not appear in the device list.
- 5. Follow the instructions in **2.2.1.3 Installing the Ulyssix Driver onto a new computer**.

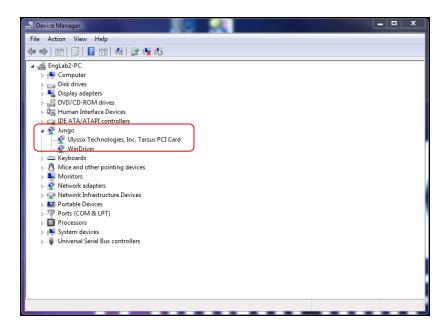
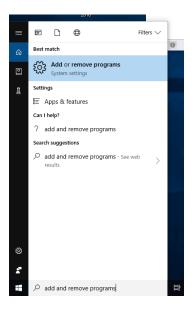



Figure 1 - Device Manager with Jungo Driver

2.2.1.2 Upgrading from a previous version of the Ulyssix Driver

To upgrade from a previous version of the Ulyssix Driver requires two steps. First, uninstall the previous version of the Ulyssix Driver. Second, install the updated version of the Ulyssix driver. Instructions for the first step are below. For the second step, please see Section 2.2.1.3 Installing the Ulyssix Driver onto a new computer.

1. In the Windows Run prompt type "Add and Remove Programs." Select Add and Remove Programs from the list of applications.

2. In the Add and Remove Programs window, find Tarsus PCI driver. Highlight Tarsus PCI Driver and select Uninstall.

- 3. Windows will ask if you are sure that you want to uninstall this app, click Yes. This will launch the Ulyssix Driver uninstall wizard. Windows 10 might ask "Do you want to allow this app to make changes to your computer." Click Yes.
- 4. When the uninstall is completed, Tarsus PCI Driver will no longer be listed in the Add Remove Programs window.
- 5. Follow the instructions in **2.2.1.3 Installing the Ulyssix Driver onto a new computer**.

2.2.1.3 Installing the Ulyssix Driver onto a new computer

Select the correct Ulyssix Driver for the Windows operating system on your computer. The following drivers are currently available. Please contact Ulyssix for other Windows operating systems.

- For Windows 7 32-bit, use installer "installer WIN7 x86.exe"
- For Windows 7 64-bit, use installer "installer WIN7 x64.exe"
- For Windows 10 64-bit, use installer "installer WIN10 x64.exe"
- 1. Select the correct Ulyssix Driver for your operating system and run the executable file. Windows 10 might ask "Are you sure that you want to allow this app to make changes to your computer?" Click Yes.
- 2. The installer will begin with this a welcome screen. Click the Install button to start the installation.

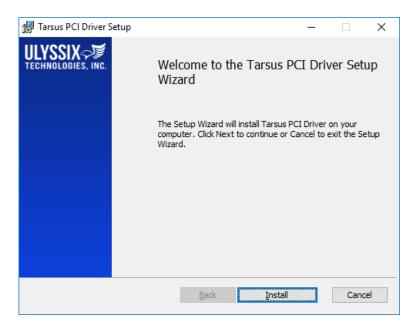


Figure 2 – Ulyssix Driver Installer Welcome Screen

3. As the new driver is being installed, you may see the following screen. Click "Install this driver software anyway" if this form appears. This is a Windows Security check for new driver installations.

Figure 3 – Windows Security Screen

4. When the Ulyssix Driver Installation finishes, an installed completed screen will appear:

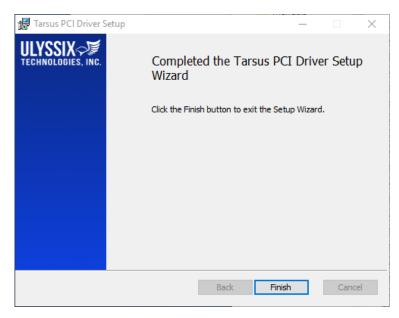


Figure 4 – Ulyssix Driver Completed Screen

5. Verify the installation of the new Ulyssix Driver in Device Manager. Navigate to the Control Panel and then to the Device Manager. In the list of installed devices, look for the entry "Ulyssix Technologies, Inc." If you expand this entry, there should be an Ulyssix card listed below it. In the example below, a Ulyssix card is listed.

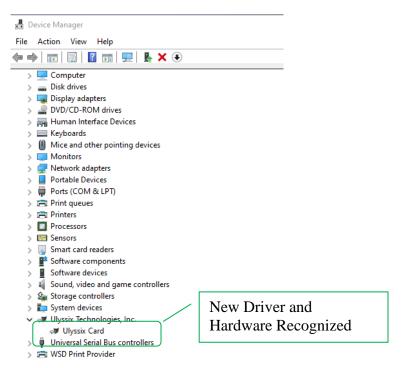


Figure 5 – Device Manager with a Successful Ulyssix Driver Installation

2.2.2 Installing ALTAIR Software

Starting with ALTAIR version 18.7, the software package has both a 32-bit release and 64-bit release. ALTAIR 32-bit will run on Windows 7 or Windows 10 computer that meets the hardware requirements. ALTAIR 64-bit will only run Windows 7 64-bit or Windows 10 64-bit operating systems. Please contact Ulyssix with any questions.

The process for a new installation or an upgrade of the ALTAIR software is similar. For an upgrade, please see **Section 2.2.2.2**. It is important to document the version numbers of your current software and DLL in case there is an issue after the upgrade.

2.2.2.1 New Installation of the ALTAIR Software

Installing ALTAIR software begins by acquiring the correct Altair.exe file for your computer. There is an installer for ALTAIR 32-bit and an installer for ALTAIR 64-bit. This installer is available on the Ulyssix webpage or on the CD that came with your Ulyssix hardware.

- 1. Double click to launch ALTAIR 32-bit.exe or ALTAIR 64-bit.exe.
- 2. The **ALTAIR Installer Setup** window will appear. Click the **Install** button to begin.

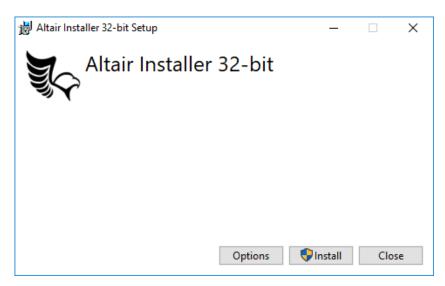


Figure 6 – Location to Extract Files

- 3. If Windows asks if you would like to let ALTAIR Installer make changes to your computer, click Yes.
- 4. After a brief wait, the installation process begins.
- 5. A window will appear for installing SlimDX. Check the box to accept the License Agreement and then click Install. SlimDX is a replacement for the Microsoft DirectX DLLs.

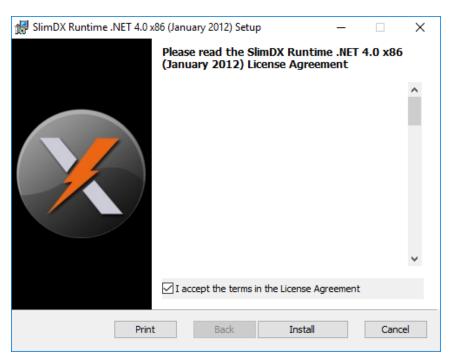


Figure 7 – SlimDX Install Wizard

- 6. SlimDX will be installed. SlimDX requires certain applications to close before finishing the installation. If the installer asks to close the application, please click Yes
- 7. When SlimDX is finished installing, click Finish to continue installing ALTAIR.

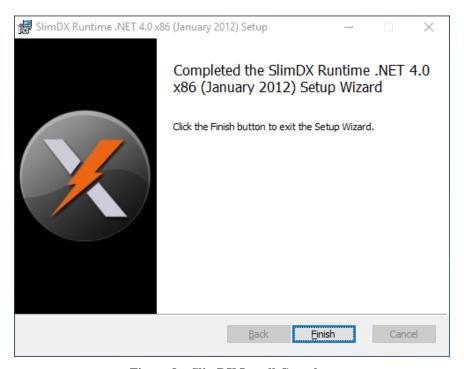


Figure 8 – SlimDX Install Complete

8. **ALTAIR Installer Welcome** screen will appear. Click **Next** to begin the installation.

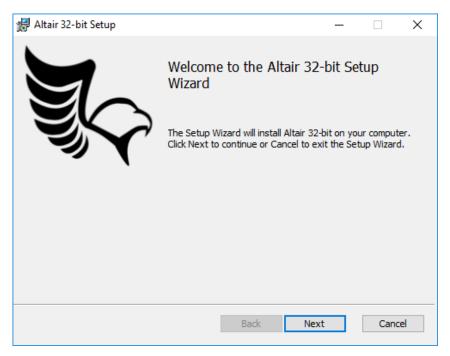


Figure 9 – ALTAIR Installer Welcome Wizard

9. The installer requests the destination folder. Strongly consider the default location. This will aid in any future troubleshooting. Also note that every user needs Read/Write access to the folder location for all features of the software to work. Click the **Next** button to continue.

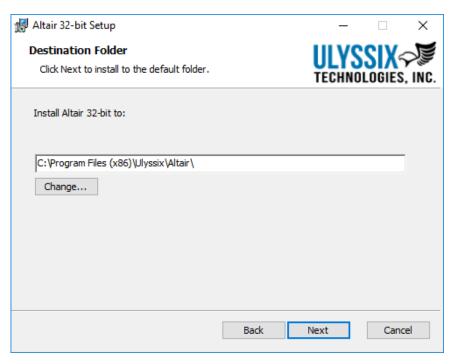


Figure 10 - Installer Destination Folder

10. The **Ready to Install the Program** window will appear. Please click the **Install** button to finalize the installation.

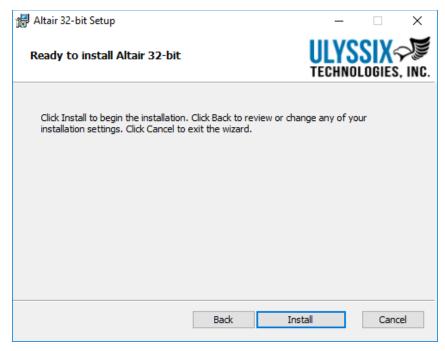


Figure 11 – Ready to Install the Program

- 11. The next window will be the **Installing ALTAIR** window. This window includes a bar to indicate progress. The installer pauses for ten seconds before the bar starts moving.
- 12. When the installation is complete, the Installation Complete window will appear. Click the Close button to close the installer.

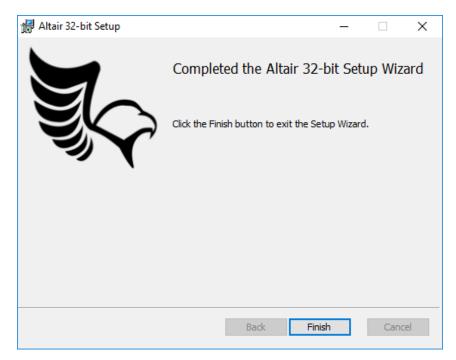


Figure 12 – ALTAIR Installation Complete

13. The ALTAIR Installer window will show the success window.

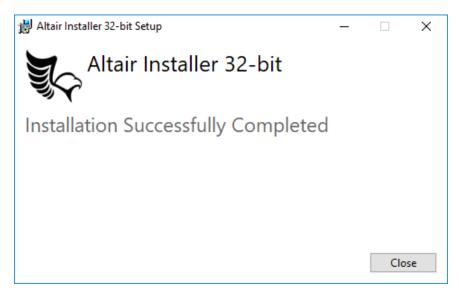


Figure 13 – ALTAIR Installer Successfully Completed

2.2.2.2 Upgrading ALTAIR Software

Upgrading the ALTAIR software is the same process as a new installation. First, start by launching your current version of ALTAIR. The version numbers of ALTAIR and pcm_hw.dll are located at the bottom of the ALTAIR window. Record these two numbers before installing the new ALTAIR software and exit the ALTAIR software. These original version numbers are useful for troubleshooting any future issues.

Figure 14 – ALTAIR Version Numbers

To upgrade ALTAIR, follow the instructions in Section 2.2.2.1 New Installation of the ALTAIR Software.

2.2.2.3 ALTAIR and the Windows Firewall

Windows 10 blocks applications from sending or receiving data through the Windows Firewall. To use the ALTAIR UDP Receiver or optional licensed feature UDP Publisher, ALTAIR must be added to the list of approved applications to communicate through the firewall. Please note, Administrator rights might be needed to change the Windows Defender Firewall settings.

- 1. In the Windows Search Bar, type Firewall and select "Allow an Application Through Windows Firewall" from the list of options.
- 2. Click the Change Settings button to allow the window to change settings to the Windows Firewall properties.
- 3. Locate ALTAIR in the list of applications and click the Detail button to launch the Edit an App window. In the Edit an App window, click the Network Types button. In the Choose Network Types window, check the boxes for both Private and Public networks. Click OK in the Network Types window. Click OK in the Edit and Add window.
- 4. In the Allowed App window, check the box next to ALTAIR. Click OK to finish the process.

2.2.2.4 Uninstall Software – Windows 7 or Windows 10

1. To un-install the ALTAIR Software from your computer, type Add and Remove Programs into the Run bar then select "Add and Remove Programs" from the list of suggested applications.

- 2. In the list of programs, highlight ALTAIR Installer 32-bit or ALTAIR Installer 64-bit and click the **Uninstall** button.
- 3. If prompted by the software, select **Remove** to un-install the program. Uninstalling the software does not uninstall the driver or remove the Ulyssix hardware from the Windows registry.

2.2.3 Power Cycling Guidelines

Ulyssix Technologies board level products are easily installed into almost any PCI, PCIe, or cPCI computer chassis. Unfortunately, all computers do not behave identically regarding the amount of time for the PCI, PCIe, or cPCI bus and the ATX power supply to settle after power down. The electronics on the Ulyssix boards require that the bus and power supply settle before re-applying power to the system. We recommend you wait a minimum of 30 seconds after you power down before restarting your computer. This will ensure the system has had time to settle and the Ulyssix cards will start-up properly.

2.3 Product Identification

Each Tarsus3 / Tarsus4 card is assigned a unique serial number before shipment from the factory. This number is clearly marked on the reverse side of the PC board. (Please see Figure 15 – Tarsus3 cPCI Product Identification below.)

Figure 15 - Tarsus3 cPCI Product Identification

Figure 16 - Tarsus3 / Tarsus4 PCIe Product Identification

2.3.1 Model Number

The model number of the Ulyssix card indicates which options are installed on that specific unit. Our model number definitions are provided in the table below:

Model	Description
Tarsus3 -cPCI-01 Tarsus3 / Tarsus4- PCIe-01	PCM Processor Card, 40 Mbps Bit Sync, Frame Sync, Decom, IRIG Time Code Reader PCM Simulator with
	ALTAIR Software Application
Tarsus3 / Tarsus4- cPCI-02DualTarsus3 / Tarsus4-PCIe- 02Dual	Dual 40 Mbps Bit Sync, Dual Frame Sync, Dual Decommutator, IRIG Time Code Reader, and PCM Simulator with ALTAIR Software Application

Table 2 – Tarsus3 / Tarsus4 Models

2.3.2 Serial Number

A unique serial number is assigned to each Tarsus3 / Tarsus4 board. Please reference this number to identify the specific unit during any communications with the factory.

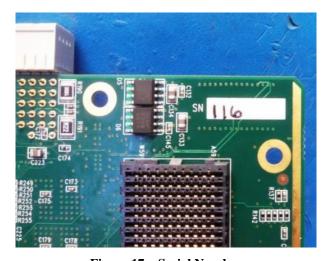


Figure 17 – Serial Number

2.4 Hardware Setup

The Tarsus3 / Tarsus4 is a sophisticated electronic device and damage may occur if the product is not handled or used properly. Care should be taken not to expose the unit to physical abuse, moisture, Electrostatic Discharge (ESD), or any other potentially harmful conditions. Carefully unpack the board in an ESD safe location and check the product for physical damage from shipment. Factory installed modification wires and components will be secured to the board with adhesive to prevent damage. If there are any questions about the condition of the board, please contact the factory immediately.

2.5 Hardware Installation

The Tarsus3 / Tarsus4 (currently only PCIe form factor) can be installed into any cPCI or PCIe chassis with an available slot. While the Tarsus3 / Tarsus4 card only requires one slot, it is preferable to install the Tarsus3 / Tarsus4 with an empty slot to the right. The Ulyssix driver as well as ALTAIR and FlashBurn software must be installed before installing the Tarsus3 / Tarsus4 card. Follow the steps below to install the Tarsus3 / Tarsus4 card:

WARNING - SERIOUS DAMAGE OR INJURY CAN RESULT IF THE POWER ISN'T TURNED OFF BEFORE INSTALLING THE TARSUS3 / TARSUS4 CARD.

- 1. Ensure the Ulyssix driver as well as ALTAIR and FlashBurn software has been installed before installing any hardware.
- 2. Turn off the power to the computer.
- 3. Remove the blank plates that cover the needed cPCI or PCIe slots.
- 4. Carefully install the Tarsus3 / Tarsus4 card into the cPCI or PCIe slot.
 - For the Tarsus3, lock the cPCI handle in place and secure the Tarsus3-cPCI in place with the screw at the top of the panel.
 - For the Bald Eagle RF / Bald Eagle RF4-PCIe, tighten the mounting screw on the PCIe panel to secure the card to the card cage.
- 5. Turn on the power to the computer.

2.5.1 Adding Cards to an Existing System

Before adding any Ulyssix cards to an existing system it is important to verify that the host computer's power supply has adequate surplus power for the total number of installed cards. Calculate the total amount of power required by the Ulyssix cards by adding the individual card power requirements as noted on the product data sheets. Please contact the factory if you need assistance.

Additional Tarsus3 / Tarsus4 cards can be installed into any available computer slot. Follow the installation instructions above. When you install additional cards into a computer, the computer bus may assign new ID numbers for existing or new cards

and will not program the hardware properly.		

depending upon the slot you install the card into and the configuration of the computer bus for your specific computer. If this happens, the configuration files will be corrupted

Chapter 3 Configuring Hardware for Use

This chapter explains how to configure your Tarsus3 / Tarsus4 card, how to install connections, and determine if your hardware is functioning properly before the first use.

Before using your Tarsus3 / Tarsus4 card, you must complete the following:

- 1. Section 2.2.1 Ulyssix Driver Installation
- 2. Section 2.2.2 Installing ALTAIR Software
- 3. Installing FlashBurn

Upon power-up, you should verify proper LED indication and connect the input and output cables to the card. The LED indicators and interconnections are explained in the following sections.

3.1 Connecting to the Hardware

Input and output connections are made to the Tarsus3 / Tarsus4 through an MDM-51 connector on the rear panel. Ulyssix supplies the mating connections to the MDM-51 which contains BNC pigtails and Twin BNC pigtails. The mating cable is a multi-purpose cable used for both the Tarsus3 / Tarsus4-01 and Tarsus3 / Tarsus4-02. The cable inputs feed different hardware functions depending on the model. The cables are labeled to identify each output channel. (Please refer to Table 3 – Tarsus3 / Tarsus4-02 Hardware Connections and Table 4 – Tarsus3 / Tarsus4-01 Hardware Connections below for connector identification and functionality.) (See Appendix C – Tarsus3 / Tarsus4 and Bald Eagle RF/Bald Eagle RF4 for details on interconnecting cables).

3.1.1 Tarsus3 / Tarsus4 Pigtail Cable

Bold Labels are used on -02 cards, normal labels are for the -01 cards only.

Connection Location\Label	Connection Function			
CH1 IN	Single Ended Analog Input BNC to Bit Sync 1			
CH1 DIFFIN	Concentric Twin-BNC Differential Analog RS422 Input to Bit			
	Sync 1 (Trompeter Part # PL75C-201)			
B1 CLK1	Bit Sync1 Encoder Output 1 Clock			
B1 OUT1	Bit Sync1 Encoder Output 1 Data Out			
-01 TIME IN \ CH2 IN	Single Ended Analog Input BNC to Bit Sync 2			
CH2 DIFFIN	Concentric Twin-BNC Differential Analog RS422 Input to Bit			
	Sync 2 (Trompeter Part # PL75C-201)			
-02 TIME IN	Single Ended Analog Input to the IRIG Time Code Reader			
-01 SIM CLK \ B2 CLK1	Bit Sync2 Encoder Output 1 Clock			
-01 SIM OUT \ B2 OUT1	Bit Sync2 Encoder Output 1 Data Out			
CH1 DACOUT	Channel 1 DAC analog out			
CH2 DACOUT	Channel 2 DAC analog out			
B1 CLK2	Bit Sync1 Encoder Output 2 Clock			
B1 OUT2	Bit Sync1 Encoder Output 2 Data Out			
DECOM2 IN	External Channel 2 Decom Data In			
DECOM2 CLK	External Channel 2 Decom Clock In			
B2 CLK1	Bit Sync2 Encoder Output Clock Out			
B2 OUT1	Bit Sync2 Encoder Output Data Out			
-02 SIM OUT	PCM Simulator Data Out			
-02 SIM CLK	PCM Simulator Clock Out			
DECOM1 IN	External Channel 1 Decom Data In			
DECOM1 CLK	External Channel 2 Decom Clock In			
B1 OUT1	Concentric Twin-BNC Differential RS422 Analog Bit Sync1			
	Ch1Encoder Data Out (Trompeter Part # PL75C-201)			
B1 CLK1	Concentric Twin-BNC Differential RS422 Analog Bit Sync1			
	Ch1Encoder Clock Out (Trompeter Part # PL75C-201)			
-01 SIM OUT \ B2 OUT1	Concentric Twin-BNC Differential CH2 Encoder Data Out			
	(Trompeter Part # PL75C-201)			
-01 SIM CLK \ B2 CLK1	Concentric Twin-BNC Differential CH2 Encoder Clock Out			
	(Trompeter Part # PL75C-201)			
DECOM1 CLK IN	Concentric Twin-BNC Differential RS422 Analog Decom 1			
	Clock Input (Trompeter Part # PL75C-201)			
DECOM1 DATA IN	Concentric Twin-BNC Differential RS422 Analog Decom 1			
	Data Input (Trompeter Part # PL75C-201)			

Table 3 – Tarsus 3 / Tarsus 4-02 Hardware Connections

3.1.2 Tarsus3 / Tarsus4-01 cPCI or PCIe Cable

Bold Labels are used on -01 cards, normal labels are for the -02 cards only.

Connection Location\Label	Connection Function			
CH1 IN	Single Ended Analog Input BNC to Bit Sync			
CH1 DIFFIN	Concentric Twin-BNC Differential RS422 Analog Input			
	to Bit Sync (Trompeter Part # PL75C-201)			
B1 CLK1	Bit Sync Encoder Output 1 Clock			
B1 OUT1	Bit Sync Encoder Output 1 Data Out			
-01 TIME IN \ CH2 IN	Single Ended Analog Input BNC to the IRIG Time Code			
	Reader			
CH2 DIFFIN	Concentric Twin-BNC Differential Analog Input to the			
	Channel 2 Input (-02 only) (Trompeter Part # PL75C-201)			
-02 TIME IN	Single Ended Analog Input BNC to the IRIG Time Code			
	Reader (not used on Tarsus3 / Tarsus4-01)			
-01 SIM CLK \ B2 CLK1	Simulator Output Clock			
-01 SIM OUT \ B2 OUT1	Simulator Output Data			
CH1 DACOUT 1	Channel 1 DAC 1 analog out			
CH2 DACOUT1	Channel 2 DAC 1 analog out			
CH1 DACOUT 2 (Tarsus4 only)	Channel 1 DAC 2 analog out			
CH2 DACOUT 2 (Tarsus4 only)	Channel 2 DAC 2 analog out			
B1 CLK2	Bit Sync Encoder Output 2 Clock			
B1 OUT2	Bit Sync Encoder Output 2 Data Out			
DECOM2 IN	External Channel 2 Decom Data In (-02 only)			
DECOM2 CLK	External Channel 2 Decom Data CLK (-02 only)			
B2 CLK1	Asynchronous Embedded PCM Stream 1-Bit Output			
B2 OUT1	Clock			
	Simulator Output Clock (-02 only)			
-02 SIM OUT	PCM Simulator Data Out (-02 only)			
-02 SIM CLK	PCM Simulator Clock Out (-02 only)			
DECOM1 IN	External Channel 1 Decom Data In			
DECOM1 CLK	External Channel 1 Decom Clock In			
B1 OUT1	Concentric Twin-BNC Differential RS422 Analog Bit			
	Sync1 Ch1 Encoder Data Out (Trompeter Part # PL75C-			
D4 CV V/4	201)			
B1 CLK1	Concentric Twin-BNC Differential RS422 Analog Bit			
	Sync1 Ch1 Encoder Clock Out (Trompeter Part # PL75C-			
A4 CIM OLUE DA OLUE1	201)			
-01 SIM OUT \ B2 OUT1	Concentric Twin-BNC Differential RS422 Simulator Data			
01 SIM CLV D2 CLV1	Out (Trompeter Part # PL75C-201) Concentric Twin PNC Differential PS422 Angles			
-01 SIM CLK \ B2 CLK1	Concentric Twin-BNC Differential RS422 Analog			
DECOM1 CLK	Simulator Clock Out (Trompeter Part # PL75C-201)			
DECOM1 CLK	Concentric Twin-BNC Differential RS422 Analog Decom			
	1 Clock Input (Trompeter Part # PL75C-201)			

Table 4 - Tarsus3 / Tarsus4-01 Hardware Connections

3.2 Identifying Hardware Status

3.2.1 LED Indicators

The upper set of three LED Indicators on the rear panel of the Tarsus3 / Tarsus4 card provides the identification number. In the lower pair of LEDs, the left LED indicates Bit Sync 1 Lock Status, and the right LED indicates the FPGA Programming Status.

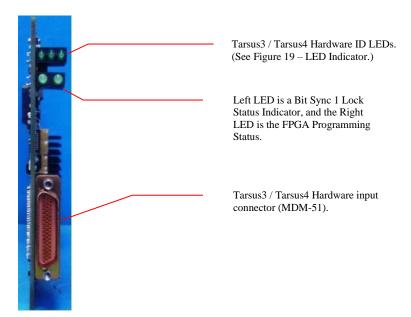


Figure 18 – Tarsus3 / Tarsus4 Rear Panel View of LED Indicators

The following diagram shows examples of how the LEDs will appear for one or multiple card set-ups.

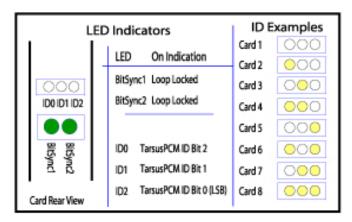


Figure 19 – LED Indicator Card Configuration Examples

3.2.2 Bit Sync Lock LED Indicator

The Bit Sync Lock LED will illuminate green when the Bit Sync digital phase lock loop has locked onto the incoming PCM signal. If the Lock LED indicates "NO LOCK" when you expect it should be "locked," then verify all the input connections and software settings are correct before contacting the factory for support.

3.2.3 Tarsus / Tarsus 4 LED ID Indicator

The ALTAIR software assigns a number to each Tarsus3 / Tarsus4 card detected in a chassis. Up to eight cards can be identified by the LED ID indicator. The ID LEDs give a binary representation of the Tarsus3 / Tarsus4 number for each card. Look at the table below, zero indicates LED off, and one indicates LED on.

ID2	0	0	0	0	1	1	1	1
ID1	0	0	1	1	0	0	1	1
ID0	0	1	0	1	0	1	0	1
Tarsus3 / Tarsus4 ID	0	1	2	3	4	5	6	7


Table 5 – Tarsus3 / Tarsus4 ID Table

Chapter 4 Configuring ALTAIR Software

This section explains how to start up the ALTAIR software and use it to configure the Ulyssix hardware.

4.1 Introducing the ALTAIR Main Screen

The ALTAIR software offers an easy-to-use interface that allows users to control and analyze data from Ulyssix cards. ALTAIR's main screen is composed of dockable windows and toolbars. The main screen of the software gives a full view of all the Ulyssix cards installed in the computer along with each Signal Strength, Bit Rate, and Lock status. All configurations, setups, and data displays are launched from this screen. To begin using ALTAIR, double-click on the ALTAIR icon located on the desktop. After launching, ALTAIR will open to the main screen shown below.

The dockable windows can be dragged and positioned to dock on left, right, or bottom of the display. Dockable windows can stack into a tabular window to conserve screen space. The dockable windows can be set to used or unused in the View menu. Unused dockable windows are not visible.

The controls in the toolbars change based on which element is selected in the Hardware Explorer. There are specific toolbar controls for the Bit Sync, Frame Sync, etc. There are also additional toolbars for each data display type.

4.1.1 Toolbars

The most efficient way to use the ALTAIR software is by using a mouse and the toolbars. The ALTAIR software provides these toolbars:

- **Main Toolbar** This toolbar is used for configuration file management, and hardware setup and display. (See Figure 21 Main Toolbar below.)
- Displays Toolbar This toolbar is always available. There are four buttons that are always in the toolbar. Other buttons appear based on the selected display. (See Figure 22 – Displays Toolbar below.)
- **Bit Sync Toolbar** This toolbar is available when a Bit Sync is selected in the Hardware Explorer. (See Figure 23 Bit Sync Toolbar below.)
- Frame Sync Toolbar This toolbar is available when a Frame Sync is selected in the Hardware Explorer. (See Figure 24 Frame Sync Toolbar below.)
- **Decom Toolbar** This toolbar is available when a Decom is selected in the Hardware Explorer. (See Figure 25 Decom Toolbar below.)
- **Simulator Toolbar** This toolbar is available when a Simulator is selected in the Hardware Explorer. (See Figure 26 Simulator Toolbar below.)
- **Time Toolbar** This toolbar is available when a Time is selected in the Hardware Explorer. (See Figure 27 Time Toolbar below.)
- Playback Toolbar This toolbar is used when the user selects Analyze from the Archive Tool Bar. While the system is in Analyze mode, it will allow the user to Play, Stop, Step, jump playback data and return to Live Data mode. (See Figure 29 Playback Toolbar below.)
- **Features Toolbar** This toolbar displays features not specifically associated with a Ulyssix card hardware element. This includes Math Parameters and Licensed Options like RS232 output.

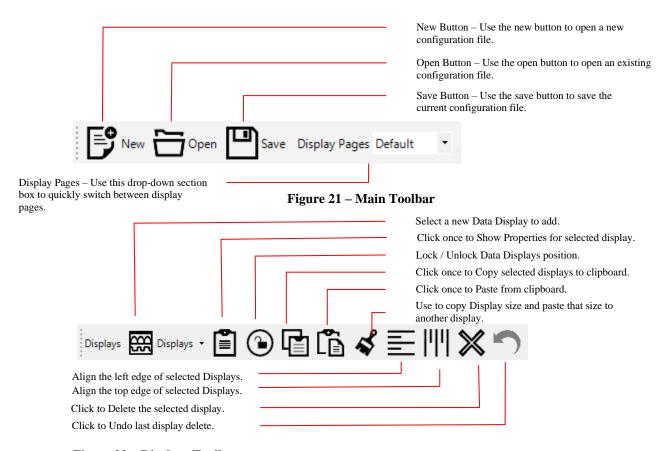


Figure 22 - Displays Toolbar

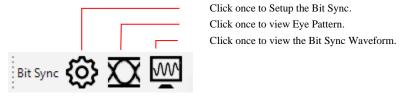


Figure 23 – Bit Sync Toolbar

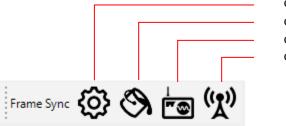


Figure 24 – Frame Sync Toolbar

Click once to Setup the Frame Sync.

Click once for the Frame Dump.

Click once for the UDP Receiver.

Click for the UDP Frame Transmitter (Licensed Option).

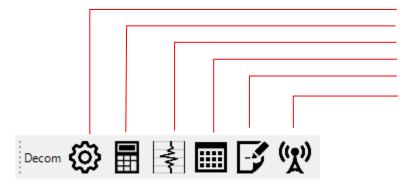


Figure 25 - Decom Toolbar

Click once to view and setup Data Processes. Click once to setup Decom Outputs.

Click once to view PCM Frame Tool.

Click Parameter Export to File.

Click once to Setup the Decom.

Click for UDP Parameter Publisher (Licensed Option).

Figure 26 - Simulator Toolbar

Figure 27 - Time Toolbar

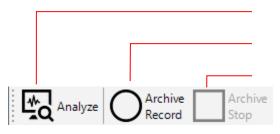


Figure 28 - Archive Toolbar

Analyze Button – Use to go into Analyze mode to view and playback recorded data.

Record – Use the record button to start recording the live PCM data.

Stop – Use the stop button to stop recording.

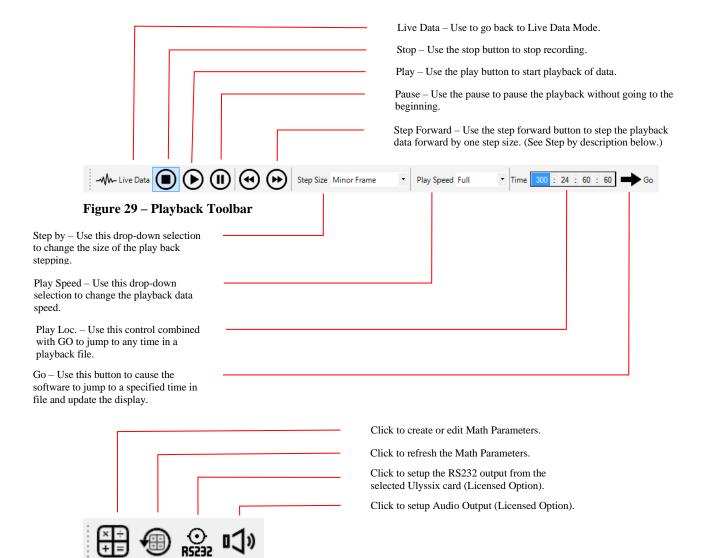
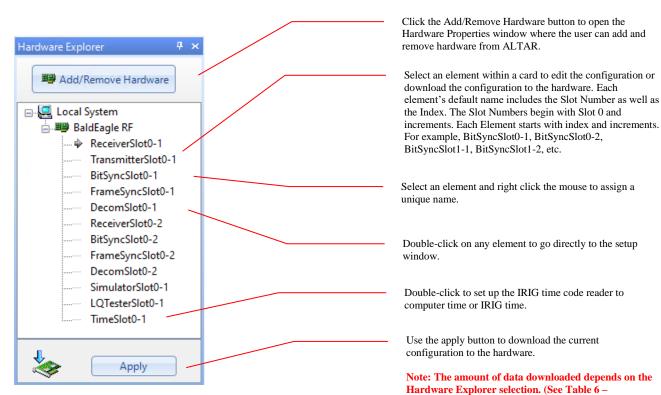


Figure 30 – Features Toolbar


4.1.2 Hardware Explorer Window

The Hardware Explorer is located on the main screen and displays the hardware configuration based on the configuration file and hardware in the system.

ALTAIR can control and monitor multiple Ulyssix PCI, PCIe, or cPCI cards within the same software package. A card can be added to a configuration even if it is not installed in the system. This allows setting up configuration files on a separate computer and later loading the configuration file on the hardware system. The software also allows a mixture of installed and uninstalled hardware.

When starting the software, the PCIe or cPCI bus is automatically scanned to detect installed hardware. An icon located to the left of the Ulyssix card indicates the hardware installation status.

- Indicates Installed Hardware
- 🥮 Indicates no hardware found

Download below)

Figure 31 – Hardware Explorer

4.1.2.1 Add/Remove Hardware

To use new hardware, the Ulyssix card must be displayed in the Hardware Explorer window. All Ulyssix cards are Plug and Play devices; they should be automatically recognized. If the system does not recognize the hardware, there are two ways to add hardware: using Auto Scan to scan the PCI bus and automatically recognize the hardware or manually add the hardware by clicking the Add/Remove Cards button. These two methods are explained below:

- **Auto Scan** The auto scan method can be invoked automatically during the creation of a new configuration file, or manually by using the Add/Remove Cards form. If scanning the PCI, PCIe, cPCI bus upon creation of a new format is not desired, it can be disabled under the *Tool/Options* screen.
- **Manual** Follow the procedure below to install cards manually:
 - 1. From the ALTAIR main screen, click on the Add/Remove Cards on the Hardware explorer docking window. The Add/Remove Cards screen will be displayed. (See Figure 32 Add/Remove Cards.)

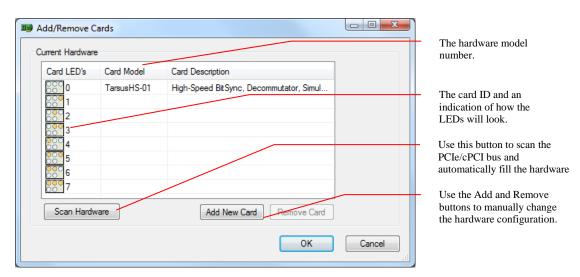


Figure 32 - Add/Remove Cards

- 2. Click on the Add New Card button and choose a hardware model from the pop-up list.
- 3. The Add New Card hardware list includes the PCM Virtual Card. The PCM Virtual Card is an instance of a Ulyssix Card in ALTAIR that is used to receive telemetry data via UDP. A PCM Virtual Card does not try to download any settings to a physical card on the PCI bus.
- 4. Click the **OK** button when complete or the **Cancel** button to abandon changes.

NOTE: When adding new Ulyssix cards to existing systems with established format files, be certain to install the new card in the computer as the furthest card from the Single Board Computer (SBC). By doing this, existing format files will stay valid, and the new card can be added to the existing format file.

4.1.2.2 Apply Button

Clicking the apply button will download the current configuration settings to the hardware. The amount and type of data downloaded will depend on the selections made in the Hardware Explorer window. (Please refer to Table 6 – Download for details on the download.)

Selected Element	Downloaded Data
ALTAIR System	All data for all cards and their associated Bit Syncs, Frame
	Syncs, Decom, and Simulator installed.
Tarsus3 / Tarsus4	Data for the selected card and all elements under it.
Card	
Receiver	Only data for the Receiver selected (Bald Eagle RF / Bald
	Eagle RF4 only).
Transmitter	Only data for the Transmitter selected (Bald Eagle RF / Bald
	Eagle RF4 only).
Bit Sync	Only data for the Bit Sync selected.
Frame Sync	Only data for the Frame Sync selected.
Decom	Only data for the Decom selected.
Simulator	Only data for the Simulator selected.
Time	Only data for the IRIG Time Code reader.

Table 6 - Download

4.1.3 Parameter View

The Parameter View displays the Decom Parameters, Status Parameters, and Math Parameters. The Status Parameters are automatically added for each ALTAIR configuration file.

The Parameter View is a dockable window with multiple tabs. The Params tab is for user defined Decom Parameters. The Status tab is for Status Parameters like Bit Lock, Frame Lock, Sub-Frame Lock, etc. The Math tab is for user defined Math Parameters. When ALTAIR has one or more Asynchronous Embedded streams, the Parameter View has two additional tabs. The Async Params tab is for user Decom Parameters from an asynchronous embedded stream. The Async Status tab is for Status Parameters for the asynchronous embedded streams.

The Parameter View has two columns. The first column has the parameter name. The second column identifies the source of the parameter. The parameter source is defined by the slot number of the Ulyssix Card and the decom index. If the setup has an

asynchronous embedded stream, the name of the stream is included in the parameter source.

The Status Parameters begin with an underscore and end with "Slot," the slot number, and then a dash with the decom number. For example, _BLOCK_Slot0-1 is the Bit Lock Status Parameter for Decom1 on the card is Slot0. The names of the Status Parameters can be changed by right clicking on the parameter in the Parameter View and selecting Edit Status to launch the Parameter Edit/Add window. In the Parameter Edit/Add window, change the text in the Name text box and click the OK button.

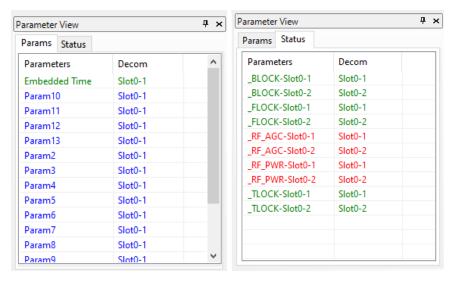


Figure 33 - Parameter View Params and Status Tabs



Figure 34 - Parameter View Async Embedded

The default color for PCM Status Parameters is green. The default color for RF Status Parameters is red. For Status Parameters, only the Range, Limits, Data Type, and Color can be edited in the Parameter Edit/Add window. The list of ALTAIR status parameters is below:

- _BLOCK is the Bit Sync Lock Status. A value of 1 is lock and a value of 0 is unlock.
- _FLOCK is the Frame Lock Status. A value of 2 is lock, a value of 1 is check, and a value of 0 is search.
- _SFID is the value of the Sub-Frame Counter (only available if the telemetry stream has a Sub Frame Sync defined in the Frame Sync setup).
- _SFLOCK is the Sub Frame Lock Status (only available if the telemetry stream has a Sub Frame Sync defined in the Frame Sync setup). A value of 2 is lock, a value of 1 is check, and a value of 0 is search.
- _TLOCK is the status of the IRIG Time Code Reader. A value of 3 is Time Reader Lock with flywheel, a value of 2 is Time Reader Lock without flywheel, a value of 1 is Time Reader Unlock with flywheel, and a value of 0 is Time Reader Unlock without flywheel.
- _BS_Bitrate is the bit rate measured by the Bit Sync clock recovery algorithm.
- _RF_AGC is the auto gain control value for a Receiver in the Bald Eagle RF / Bald Eagle RF4. The range is 0 to 73dB.
- _RF_AGC_DC is the filtered auto gain control value for a Receiver in the Bald Eagle RF / Bald Eagle RF4. The range is 0 to 73dB.
- _RF_PWR is the measure measured at the input to a Receiver in the Bald Eagle RF / Bald Eagle RF4. The range is -128dB to 5dB.
- _RF_EbNo is the EbNo calculated from the RF Power compensated for the bit rate, code type, and forward error correction.
- _RF_FreqOffset is the difference between the user entered RF center frequency and the center frequency measured by the RF demodulator.

Use the Parameter View window to edit parameters or load parameters into a data display. Right clicking on a parameter displays a menu with options to edit the parameter, add it to an existing display, or add it to a new display. Double clicking on a parameter launches the Parameter Edit/Add window.

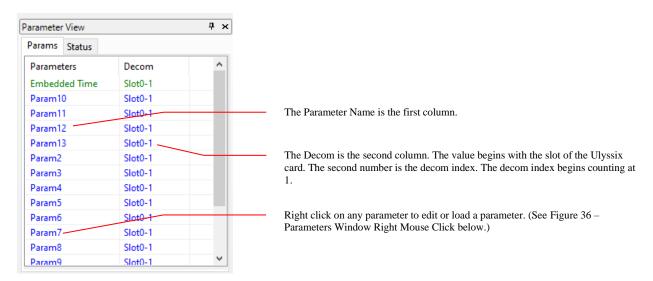


Figure 35 – Parameter Window

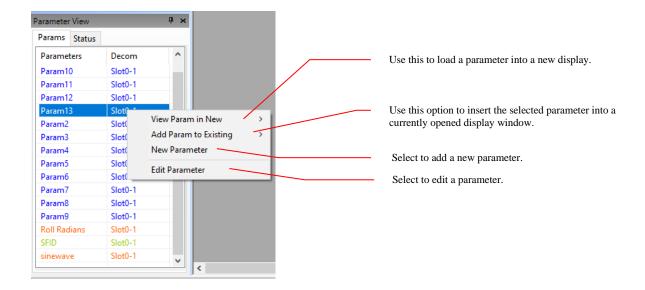


Figure 36 – Parameters Window Right Mouse Click

4.1.4 Display Properties Window

The Display Properties window shows the attributes of a selected display within the display area. Users can make immediate changes by editing its attributes. The example below is from a Tabular Display:

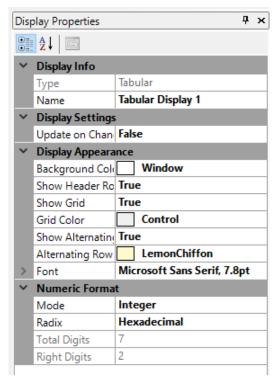


Figure 37 – Display Properties

The properties in the Display Properties window are organized into groups. Each group is separated by a dark gray bar with the group names. Most displays include the following groups:

- 1. Display Info Includes the display type and the display name.
- 2. Display Settings Configurable properties for the display's functionality.
- 3. Display Appearance Includes properties for colors, fonts, grid layout, etc.
- 4. Numeric Format Includes properties for displaying numeric mode (integers, scientific notation, or floating point), radix (binary, octal, decimal, or hexadecimal), the number of digits to the right of the decimal place, and the total number of digits.

Most displays include additional groups specific to that display.

4.1.5 The Hardware Status Bar

The Hardware Status bar on the main screen provides continuous status, updated on a 250-millisecond interval, of all Ulyssix cards and their associated Receivers, Bit Syncs, Frame Syncs, Simulators, and IRIG Time Code Readers. Use this bar during configuration to verify the proper setup and operation. Also use this bar during live testing to verify and monitor PCM signal existence, quality, and status.

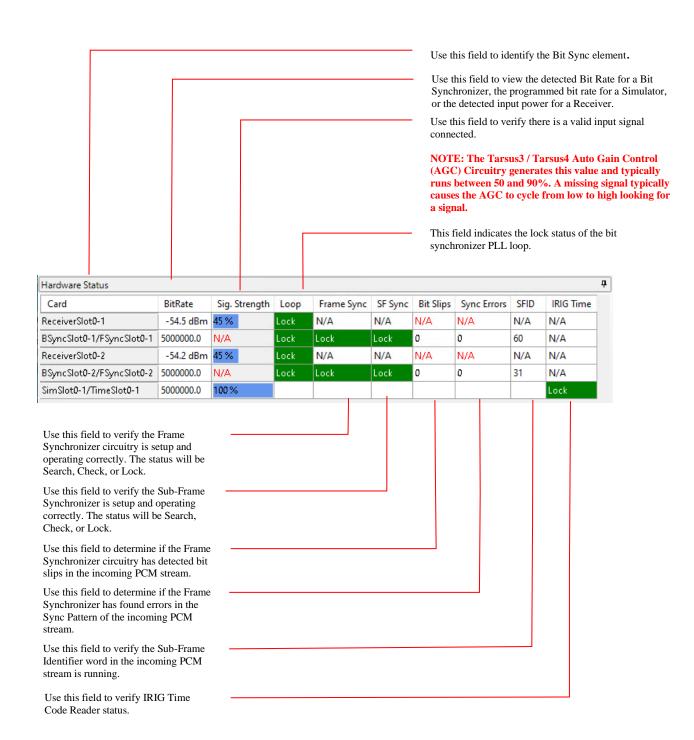


Figure 38 - Status Section of Main Screen

4.1.6 Events Window

This Events Window logs noteworthy events that occur while the ALTAIR software is running. The log begins with the identifier, which is the Ulyssix Card name and the element. Next, is the Event reason. And the last part of the event is the time stamp.

Right clicking on the Events Window brings up a menu with options to copy the contents or clear the Events Window. The data is copied as text with the same formatting as seen in Events Window.

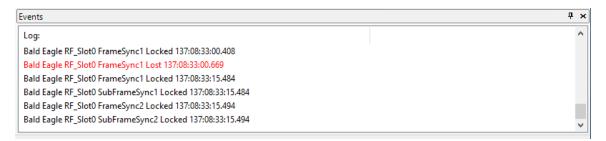


Figure 39 - Events Window

In the image above, the first event is BaldEagleRF_Slot0 FrameSync1 Locked 137:08:33:00.408. The identifier is BaldEagleRF_Slot0 FrameSync1. The event is Locked. And the time stamp is in IRIG format: Day 137 Hour 08 Minute 33 Second 00 Millisecond 408.

Archive Start and Archive Stop events are always logged. Frame Lock, Sub Frame Lock, and Parameter Limit Violations are optionally logged. Logging for these events is enabled by going to the main menu clicking on **Tools** and then selecting **Options**. In the Options window, click on the **Events** tab and then check the box next to the desired option.

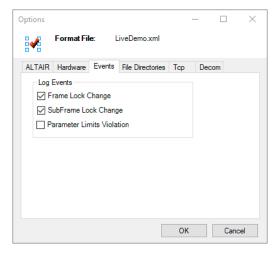


Figure 40 – Optional Events

4.1.7 Displaying and Hiding Toolbars and Docking Windows

Toolbars and Docking Windows can be displayed or hidden. For example, users may want to hide the Archive Toolbar until ready to change modes and use that toolbar. The Hardware Explorer, Parameters, and Hardware Status windows are referred to in this manual as Docking Windows. Docking Windows can be hidden in the same manner as the toolbars. To display or hide a toolbar, click on the View menu at the top of the ALTAIR main screen. Select a toolbar or Docking Window from the list to enable or disable.

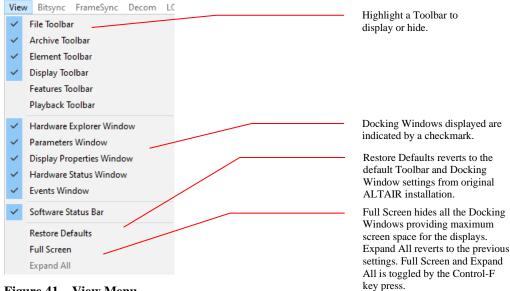
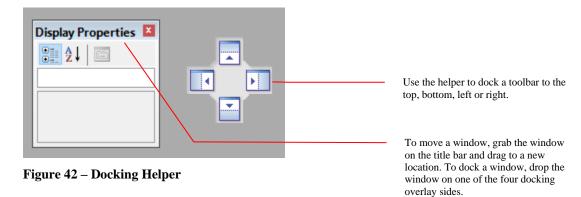



Figure 41 – View Menu

4.1.8 Moving Toolbars and Docking Windows

Toolbars are docked just below the menu. Docking Windows are located either to the left, right, or bottom of the ALTAIR main screen. To rearrange Docking Windows, use the mouse and drag to a new location. Locations for Toolbars are limited and will be placed at the closest acceptable position automatically. Docking Windows are more flexible and can be docked anywhere on the screen or left in a "floating mode."

When dragging a Docking window, a "helper" overlay (see Figure 42 – Docking Helper) is displayed on the screen showing what points to drop the window. The Docking Helper appears in the center of the screen or the center of another Docking Window.

4.2 ALTAIR Lock Windows

ALTAIR contains various kinds of windows: setup windows, dialog windows, data display windows, etc. Some windows have a **Lock** checkbox in the bottom left corner. When the **Lock** checkbox is checked, the window stays in front of the ALTAIR Main Screen even when the user clicks on a different window. This prevents the window getting "lost" behind the ALTAIR Main Screen. When the **Lock** checkbox is unchecked, the window can fall behind the ALTAIR Main Screen.

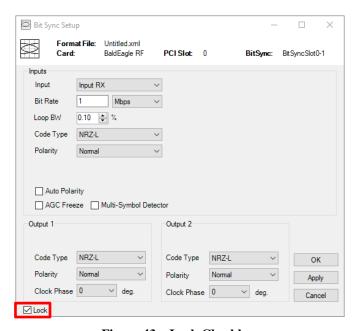


Figure 43 – Lock Checkbox

4.3 File Management

The ALTAIR software maintains configuration information in XML based data files. The XML file contains the configuration for the Ulyssix hardware as well as the ALTAIR software. The ALTAIR Display Screens are stored in separate XML file with the DP extension. ALTAIR packages the XML and DP files into one file with the extension ULX. The ULX file is a single file solution for ALTAIR configuration.

The data files can be named, saved, and loaded upon request. Loading a configuration file reads the configuration from the file, modifies the configuration for compatibility with the current Ulyssix hardware, and then downloads the configuration to the hardware. This method of file management allows pre-creating a configuration file for each unique test event and then loading the configuration file to collect PCM data for a specific test event.

The commands to open, save, and create a new configuration file are in the File menu.

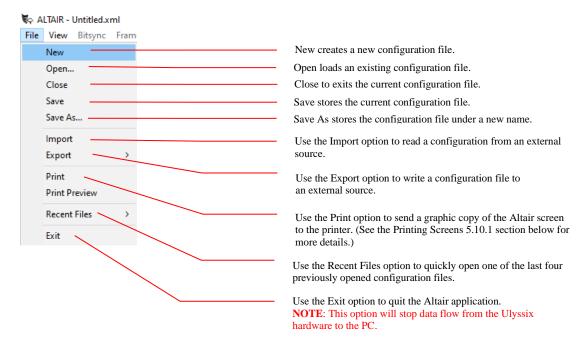


Figure 44 – File Menu

4.4 Configuring the Bit Sync

On the ALTAIR main screen, select Bit Sync in the Hardware Explorer window or from the main menu select *Bit Sync\Setup Bit Sync*. The Bit Sync setup screen will be displayed as shown below.

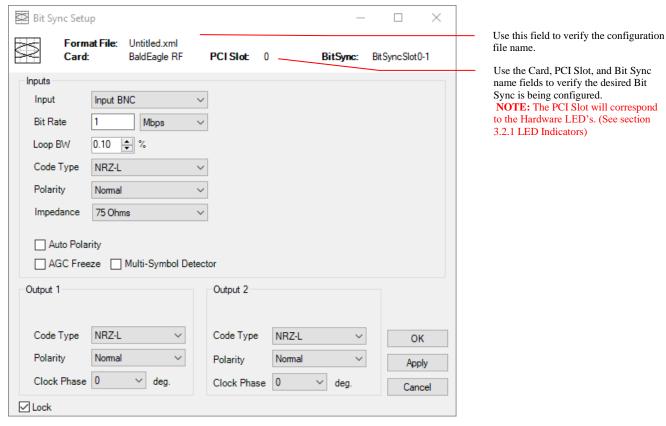


Figure 45 – Bit Sync Setup

1. Select an input connection - either **Input BNC**, **Input Diff**, **or Input RX**. When Input BNC is selected, the Tarsus3 / Tarsus4 card will receive data from the BNC input connector. If **Input Diff**. is selected, the card will receive data from the concentric twin-BNC connector. The Input RX input is only available on the Bald Eagle RF / Bald Eagle RF4. It connects the output of the RF Receiver to the input of the Bit Sync.

The Hardware uses a switch to choose the input; all inputs are not active at the same time.

- 2. Select a **Code Type** for the incoming PCM stream.
- 3. **Choose Polarity**. If the polarity is unknown, select **Auto Polarity** and the software will determine the appropriate setting.
- 4. Enter the incoming PCM stream **Bit Rate** up to 40 Mbps. This rate unit (bps, Kbps, Mbps) is selectable by using the drop-down selection box.

- 5. The **Loop Bandwidth** setting is selectable between 0.01 to 3.00 percent. Use a smaller loop bandwidth to achieve a better BER performance out of the Bit Sync, however, if the input PCM bit rate is slightly low or high; the Bit Sync might not lock. If a lock does not occur, try increasing the loop bandwidth.
- 6. Select **AGC Freeze** (where the Auto Gain Control values are "frozen") to decrease re-sync acquisition time upon incidence of bit lock loss.
- 7. Select the **PCM Code Type** for the first Bit Sync Output. The output code types are non-return to zero level (**NRZ_L**), non-return to zero mark (**NRZ_M**), non-return to zero space (**NRZ_S**), bi-phase level (**BIΦ_L**), bi-phase mark (**BIΦ_M**), bi-phase space (**BIΦ_S**), randomized non-return to zero **RNRZ_11** and **RNRZ_15**. The output code type settings are completely independent from the input Code Type.
- 8. Select either **Normal** or **Inverted** polarity for the output PCM data stream.
- 9. Select a clock phase of **0**, **90**, **180** or **270** degrees. This setting changes the relationship of the data with respect to the PCM clock rising edge. The proper setting here depends entirely on the type of external equipment attached.
- 10. Setup a second Bit Sync Output for the same input signal, otherwise, press the **OK** button to save or press the **Cancel** button to abandon changes.
- 11. Repeat steps 7 through 10 for the second Bit Sync Output.
- 12. Click the **Apply** button to immediately send the changes to the hardware. Click **OK** to store the changes to the in-memory database. Click **Cancel** to abort changes.

Clicking OK does not save the changes to the computer hard drive; it simply stores these changes in the in-memory database. Saving the configuration file to the hard drive must be done from the main ALTAIR screen.

4.5 Configuring the Frame Sync

From the ALTAIR main screen, select a Frame Sync in the Hardware Explorer window or *Frame Sync\Setup*, from the main menu. The Frame Sync setup screen will be displayed as shown below.

The dual channel Tarsus3 / Tarsus4-02 and Bald Eagle RF / Bald Eagle RF4-02 cards have external inputs for both Frame Sync 1 and Frame Sync 2. Frame Sync 1 External Input has source options of TTL or RS422. Frame Sync 2 External Input source must be TTL.

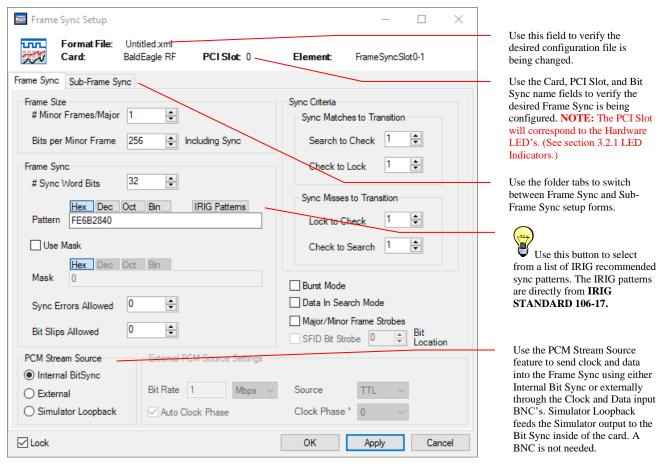


Figure 46 – Frame Sync Setup

- 1. Enter the number **Minor Frames per Major Frame** from 1 to 1024.
- 2. Enter the number of **Bits per Minor Frame**, including the number of Frame Sync Pattern bits.
- 3. Enter the number of **Sync Word Bits** from 16 to 64 bits.
- 4. Manually enter press the IRIG Patterns button to select the appropriate Frame Sync Pattern for the incoming PCM stream.

- 5. Select the **Use Mask** to setup a mask value that causes the Tarsus3 / Tarsus4 frame sync circuitry to ignore certain bits of the sync word. To use the mask, enter a mask value using the following logic rules:
 - a. A logic high or '1' in any bit position will cause the Frame Sync circuitry to ignore that bit. For example:

Sync Word Size: 32-bits

Sync pattern: 0xFE6B2840 (in Hexadecimal)
Mask value: 0x0000F000 (in Hexadecimal)

- b. The example above will cause the Frame Sync circuit to ignore bits 12 through 15 during sync detection. Any value in the PCM stream where the "2" in the FE6B2840 pattern is located would cause a valid frame lock on the status screen.
- 6. Enter the number of **Sync Errors Allowed** the frame sync circuitry should allow in the incoming PCM stream before declaring the frame NOT locked. **NOTE:** A sync error is defined as any bit within the sync word that is not masked and does not match the entered sync pattern. (A non-allowed sync error will cause a transition in the sync criteria explained in steps 9-12 below.)
- 7. Enter the number of **Bit Slips** that the frame sync circuitry should allow in the incoming PCM stream before declaring the frame NOT locked. (A non-allowed bit slip will cause a transition in the sync criteria explained in steps 8-11 below.)
- 8. Set the sync criteria for the number of **Search to Check** transitions the hardware should require before changing the frame status from Search to Check.
- 9. Set the sync criteria for the number of **Check to Lock** transitions the hardware should require before changing the frame status from Check to Lock. (See
 - Figure 38 Status Section of Main ScreenFigure 46 Frame Sync Setup.)
- 10. Set the sync criteria for the number of **Lock to Check** transitions the hardware should require before losing the Lock status and changing it to Check. (See
 - Figure 38 Status Section of Main Screen.)
- 11. Set the sync criteria for number of **Check to Search** transitions the hardware should require before losing the Check status and changing it Search. (See
 - Figure 38 Status Section of Main Screen.)
- 12. Use the **Data In Search Mode** selection if the user desires data regardless of Frame Lock.
- 13. Use **Burst Mode** to archive frame data to the hard drive faster than normal mode. The criteria used for Burst Mode archive is to start storing data immediately after the minor frame sync pattern is recognized. The number of bits in the minor frame is ignored from the frame sync criteria and data will continue to archive while the minor frame sync pattern is detected. In effect, this is the same as setting the Frame Sync Criteria for "Search to Check," "Check to Lock," "Lock to Check," and "Check to Search" to zero.

- 14. Select the PCM Stream Source either **Internal Bit Sync**, **External**, or **Simulator Loopback**. The Internal Bit Sync requires data into the Bit Sync Input. The External Input requires clock and data into the Frame Sync Inputs. The Simulator Loopback connects the Simulator to the Bit Sync inside of the Ulyssix PCM card. For Internal Bit Sync or Simulator Loopback skip to step 18.
- 15. For External PCM streams, set the **Source** to either TTL or RS422 for Frame Sync 1. Frame Sync 2 External Input must be TTL.
- 16. Enter the External PCM stream **Bit Rate** and **Bit Rate Units** from the drop-down list.
- 17. Select a **Clock Phase** 0 degrees or 180 degrees for the external clock phase. The check box for Auto Clock Phase will attempt to detect the Clock Phase.
- 18. Click the **Apply** button to immediately send the changes to the hardware. Click **OK** to store the changes to the in-memory database. Click **Cancel** to abort changes.

Clicking OK does not save the changes to the computer hard drive; it simply stores these changes in the in-memory database. Saving the configuration file to the hard drive must be done from the main ALTAIR screen.

4.6 Configuring the Sub-Frame Sync

From the ALTAIR main screen, select a Frame Sync in the Hardware Explorer or *Frame Sync\Setup*, from the Main Menu. When the setup screen appears, select the Sub-Frame Sync folder tab. The Sub-Frame Sync setup screen will be displayed as shown below.

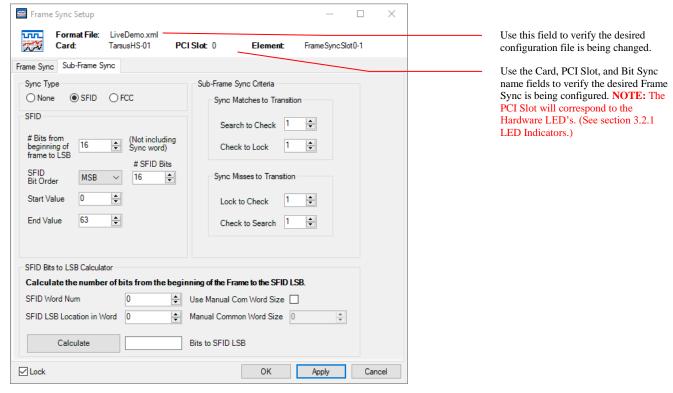


Figure 47 – Sub-Frame Sync Setup

- 1. Enter the **Sync Type**: Sub-Frame ID counter (SFID), Frame Code Complement (FCC), or no minor frame sync (None). If SFID or FCC is selected, go to Step 2, otherwise skip to Step 9.
- 2. For SFID, enter the **Number of Bits from the Beginning of the Frame to the Least Significant Bit (LSB)** of the SFID word not including the frame sync pattern. For example, if the SFID word is located at word location 1 and the data is transmitted most significant bit first (MSB), the number of bits would be the size of the SFID word. The SFID Bits to LSB Calculator at the bottom of the page can help determine the Bits to SFID.
- 3. Set the **SFID Bit Order** as MSB or LSB. This is the order in which the SFID data is transmitted in the PCM stream.
- 4. Enter the **Number of SFID Bits**.
- 5. Enter the **Start Value** and **End Value** for the SFID. The SFID usually starts at zero and ends at the number of minor frames, minus one.

- 6. Set the Sync Criteria for the number of **Search to Check** transitions the hardware should require before changing the frame status from Search to Check. (See Figure 47 Sub-Frame Sync Setup.)
- 7. Set the sync criteria for the number of **Check to Lock** transitions the hardware should require before changing the frame status from Check to Lock.
- 8. Set the sync criteria for the number of **Lock to Check** transitions the hardware should require before losing the Lock status and changing it to Check.
- 9. Set the sync criteria for the number of **Check to Search** transitions the hardware should require before losing the Check status and changing it Search.
- 10. Click the **Apply** button to immediately send the changes to the hardware. Click **OK** to store the changes to the in-memory database. Click **Cancel** to abort changes.

Clicking OK does not save the changes to the computer hard drive; it simply stores these changes in the in-memory database. Saving the configuration file to the hard drive must be done from the main ALTAIR screen.

4.7 Configuring the Decom

Decommutating PCM data is a combined effort of the Tarsus3 / Tarsus4 hardware and the ALTAIR software. The following section describes the process of configuring the Tarsus3 / Tarsus4 hardware to decommutate a PCM stream. It also setups up the software to extract data from the PCM stream. The extracted data will be identified, combined, and processed so the user can then visualize and analyze the PCM data.

From the ALTAIR main screen, select a Decom in the Hardware Explorer window or select *Decom/Setup* from the Main Menu. The Decom setup screen will be displayed as shown below.

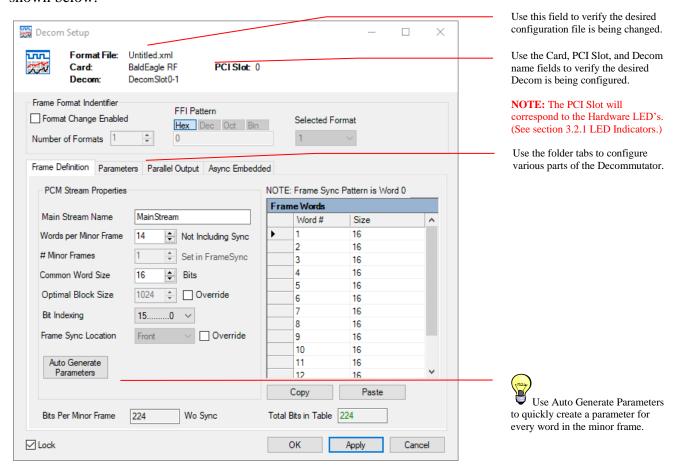


Figure 48 – Decom Setup

4.7.1 Defining the Frame Format Indicator

This section is required only if the format uses the IRIG Class II Decom Frame Format Indicator (FFI). If it is not used, verify the **Format Change Enabled** button is not checked and continue to the next section.

1. The next step will depend on whether the IRIG Class II Decom Frame Format Indicator (FFI) is used. If it is not used, verify the **Format Change Enabled** button is not checked and continue to step 11.

- 2. Enable the FFI feature by clicking the **Format Change Enabled** check box. This selection enables all other FFI fields at the top of the Decom window as well as the FFI Commutation Type in the Parameter Edit/Add window. To use the FFI, an FFI parameter must be created.
 - a. IRIG106 defines FFI as: "Format change is defined as change frame structure, word length or location, commutation sequence, sample interval, or change in measurement list. Format changes shall occur only on minor frame boundaries. Bit synchronization shall be maintained, and fill bits used instead of intentional dead periods. Format changes are inherently disruptive to data processing; fixed format methods are preferred." (IRIG STANDARD 106-17 Part I, page 4-6).
- 3. The next step is to select the number of unique formats in the **Number of Formats** control.
- 4. A Frame Format Identifier (FFI) word is needed to allow the Tarsus3 / Tarsus4 hardware to identify a unique pattern in the PCM stream and perform a format switch. Select the FFI Number in the **Selected Format** combo box and then enter the FFI pattern into the **FFI Pattern** control. The **FFI Pattern** control allows you to select Hex, Dec, Octal, or Binary to enter your FFI Pattern.
- 5. Repeat Step 4 for each of the FFI Numbers in the **Selected Format** combo box.

Clicking OK does not save the changes to the computer hard drive; it simply stores these changes in the in-memory database. Saving the changes to the hard drive must be done from the main ALTAIR screen.

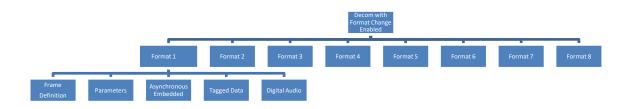


Figure 49 – Decom Data Configuration for a Single Format

4.7.2 Defining the PCM Frame

To define a PCM frame, follow the step-by-step procedure:

1. At the Decom Setup main screen, select the **Frame Definition** tab. The frame definition screen will be displayed. (See **Figure 50 – Frame Definition Setup**.)

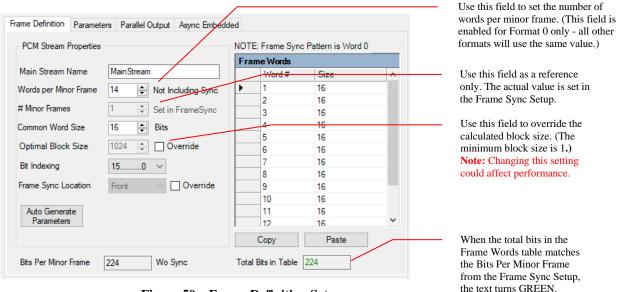


Figure 50 – Frame Definition Setup

- 2. Enter the number of words in each minor frame. Moving the cursor from this field causes the **Frame Words** on the right-hand side of the screen to automatically update for the number of words entered.
- 3. Enter the common word size in bits. Moving focus from this field will cause the **Frame Words** to be automatically updated.
- 4. If words in the PCM frame have different word sizes, the last step is to define the word size for each word in the minor frame. The word size can be changed by selecting the size field in the **Frame Words** table for the appropriate word and directly typing in a new value. The sum of the Frame Words Size must be less than Bits Per Minor Frame.
- 5. If using **Optimal Block Size**, use the estimated best number of minor frames to pack in a single DMA transfer (approximately 10ms of data).
- 6. Use **Bit Indexing** to define the MSB and LSB as 0, 1, or Nth bit of the Word.

4.7.3 Auto Generate Parameters

The Auto Generate Parameters button uses the frame definition from the Decom Setup window's PCM Stream Properties settings and creates a normally commutated Decom Parameter for each word location. This is a quick way to populate the frame using the default Decom Parameter settings.

The default Decom Parameter settings are accessed by clicking Tools on the menu bar and selecting Options to launch the Options window. In the Options window, click on the Decom tab. In the Decom tab, there are default settings for the Decom Parameters' default color, data type, and bit data type.

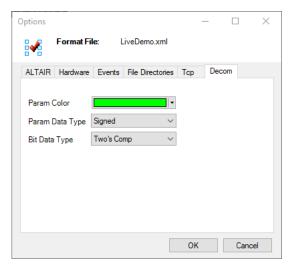


Figure 51 – Default Decom Parameter Settings

4.7.4 Asynchronous Embedded Streams

Asynchronous embedded streams are secondary telemetry streams that occur inside a main telemetry stream. Each asynchronous embedded stream has its own frame sync pattern, frame length, and clock speed. The data from the embedded stream occupies a fixed number and location of decom words per minor frame in the main telemetry stream. The embedded stream is asynchronous to the main stream, meaning that the data clock of the embedded stream is different from the data clock of the main stream. Typically, the asynchronous embedded stream runs slower than the main stream. In the PCM Encoder of the test vehicle, the asynchronous embedded stream data is stored in a FIFO and when a complete frame is stored, it is dumped to the main stream in consecutive words. When the asynchronous embedded data is not available, the words in the main stream are filled with a specific filler word.

For example:

Main Stream:

Frame Rate: 5kHz (Bit Rate of 4Mbps)
Frame Sync Pattern: FE6B2840 (32-bits)
Frame Length: 800 bits (fifty 16-bit words)

Word Size: 16-bits Minor Frames: 64

Asynchronous Embedded Size: 160 bits (ten 16-bit words) per minor frame

Asynchronous Embedded Stream:

Frame Rate: 400Hz (Bit Rate of 360kbps) Frame Sync Pattern: EDE20 (20-bits)

Frame Length: 900 bits (ninety 10-bit words)

Word Size 10-bits Minor Frames 1

Fill Word: 0xAAAA

In the example above, there are 160 bits of asynchronous embedded data per minor frame, but the asynchronous embedded frame is 900-bits. It will take 5.625 minor frames from the main stream to contain one frame from asynchronous embedded stream. One frame of asynchronous frame is 2.5mS (400Hz). In that same 2.5mS, the main frame has 12.5 minor frames. These 12.5 minor frames have 2,000 bits of asynchronous data. Since a minor frame of asynchronous embedded frame is only 900-bits, the remaining 1,100 bits of the 2,000 bits of the asynchronous data in the main frame is filled with the fill word.

Setting up the Asynchronous Embedded Stream:

- 1. Double click the Decom in the Hardware Explorer to launch the Decom Setup window.
- 2. In the Decom Setup window, select the Async Embedded tab.

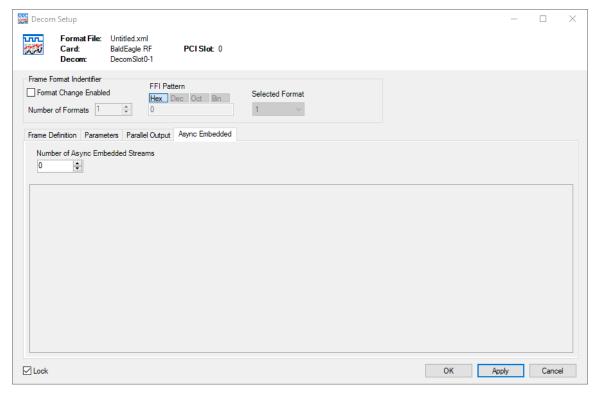


Figure 52 – Async Embedded Setup Window

- 3. Click the up arrow on the Async Embedded Streams numeric control to set the number of asynchronous embedded streams needed. ALTAIR allows up to eight asynchronous embedded steams. Please note that each asynchronous embedded stream has its own software frame sync and software decom, which use computer resources. The frame size and data rates of the main stream and asynchronous embedded streams determine the required computer resources.
- 4. Once the Async Embedded Streams numeric control is increased, a new Async Embedded Stream control appears.

Figure 53 – Async Embedded Stream Control

- 5. The Async Embedded Stream control has the following controls:
 - a. Async Name this text box is the name of the asynchronous embedded stream. This name is used to identify this asynchronous embedded stream in other parts of ALTAIR.
 - b. Start Word the staring word location for the asynchronous embedded stream in the main stream. This word references the variable bits per word table in the Decom Setup window.
 - c. End Word the end word location for the asynchronous embedded stream in the main stream. This word references the variable bits per word table in the Decom Setup window.
 - d. Comm Type the commutation type for the asynchronous embedded stream. There are four options: Block, Sample, Random Normal, and Random.
 - i. Block every word between Start Word and End Word is part of the asynchronous embedded stream.
 - ii. Sample the asynchronous embedded stream begins at Start Word and increments by the interval to End Word. For example, if Start Word is 3, End Word is 7, Comm Type is Sample, and Interval is 2, then Words 3, 5, and 7 are the asynchronous embedded stream.
 - iii. Random Normal the words for the asynchronous embedded stream are selected from anywhere in the minor frame. And those words are in the asynchronous embedded stream in every minor frame. When Random Normal is selected, the Setup button is enabled. You must click the Setup button to choose the words in the minor frame for the Random Normal asynchronous embedded stream.
 - iv. Random the words for the asynchronous embedded stream are selected from anywhere in the major frame. When Random is selected, the Setup button is enabled. You must click the Setup button to choose the words in the major frame for the Random asynchronous embedded stream.
 - e. Interval only used when Comm Type is set to Sample. Interval is the spacing between words in the asynchronous embedded stream. With a Start Word of 3, End word of 12, and Interval of 3 the asynchronous embedded stream uses Words 3, 6, 9, and 12.
 - f. Valid this check box is not currently used.
 - g. Stream Source this control determines the PCM stream source for the Async Embedded Stream. This control can be set to another Async

- Embedded Stream to implement an Async Embedded inside of another Async Embedded.
- h. Setup this button is only enabled for Comm Types of Random Normal and Random. Clicking this button launches a window to enter the Word and Frame positions. The entry uses the format "W1, F1;" where W1 is word 1 and F1 is frame 1. There is a comma between W1 and F1. And there is a semicolon after F1.

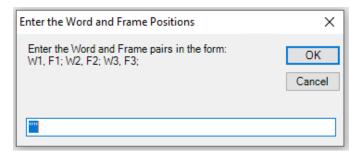


Figure 54 – Async Embedded Random Normal and Random Word Entry

- i. Frame Sync this button launches the Async Embedded Frame Sync window.
- j. Decom this button launches the Async Embedded Decom window.
- 6. Set the Async Name text box to the name of the asynchronous embedded stream.
- 7. Set the Start Word, End Word, and Comm Type to define the location of the asynchronous embedded data in the main stream. If the Comm Type is Sample, then set the Interval.
- 8. Click the Frame Sync button to launch the Async Frame Sync window.

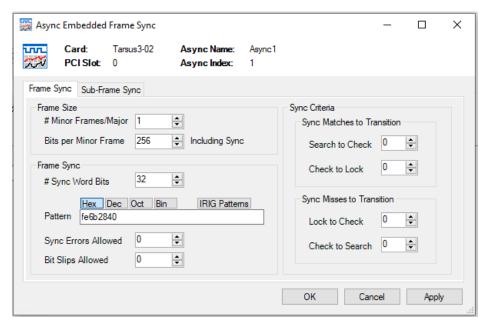


Figure 55 – Async Embedded Frame Sync Window

- 9. The Async Embedded Frame Sync window has similar controls to the Frame Sync Window:
 - a. Frane Size
 - i. Bits per Minor Frame the total number of bits in the asnchronous embedded minor frame. This value includes the bits in the asynchronous embedded frame sync pattern.
 - b. Frame Sync
 - i. Number of Sync Word Bits the number of bits in the frame sync pattern. This value needs to correspond to the entry in the Frame Sync Pattern control.
 - ii. Frame Sync Pattern the value of the frame sync pattern. This control has a button that allows you to select the defaul IRIG Pattern for the number of bits in the frame sync pattern. The Hex, Dec, Oct, and Bin buttons selece the numeric format for how the frame sync pattern is displayed and entered.
 - iii. Sync Errors Allowed the number of bits in the binary stream allowed not to match the frame sync pattern. Setting Sync Errors Allowed to one means that the frame sync will identify the frame sync pattern in the binary stream when all but one bit match.
 - iv. Bit Slips Allows the number of bits in the binary stream allowed to be off for the location of the frame sync pattern. Setting Bits Slip Allowed to one means that the frame sync will identify the frame sync pattern in the binary stream if it is located bits per minor frame plus or minus one bit from the prviously located frame sync pattern.
 - c. Sync Criteria
 - i. Search to Check the number of found frame sync patterns to promote from Search to Check.
 - ii. Check to Lock the number of found frame sync patterns to promote from Check to Lock.
 - iii. Lock to Check the number of missed frame sync patterns to demote from Lock to Check.
 - iv. Check to Search the number of missed frame sync patterns to demote from Check to Search.
- 10. Set the Bits per Minor Frame, Number of Sync Word Bits, and the Frame Sync Pattern
- 11. Set the Sync Errors Allowed and Bit Slips Allowed. The default values are 0. This is the recommended setting unless a change is needed to aid in keeping lock.
- 12. Set the Sync Criteria. The default values are 0. These values should stay at 0 unless there is a compelling reason for increasing them. Because the asynchronous embedded stream might have filler bits between frames, the frame sync needs to go from Search directly to Check when it finds a frame sync pattern and then from Check directly to Search when it misses a frame sync pattern. For more information, please contact Ulyssix.
- 13. The Frame Sync window has a tab for the Sub-Frame Sync. If the Sub-Frame Sync is not used, please skip to the next step.

a. Click on the Sub-Frame Sync tab. The settings are like the Sub-Frame Sync menu for the Frame Sync

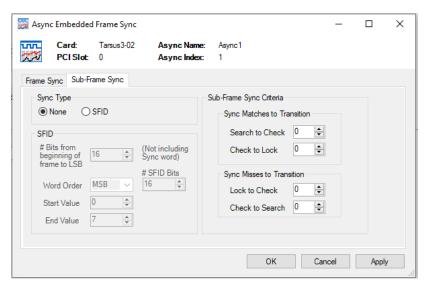


Figure 56 – Async Embedded Sub-Frame Sync Window

- b. Select the use of the SFID.
- c. Set the number of bits from the end of the Frame Sync Pattern to the end of the SFID. If the SFID is 16-bits long and is the first word in the minor frame, then the value is 16.
- d. Set the Word Order for the SFID, either Most Significant Bit First (MSB) or Least Significant Bit First (LSB).
- e. Set the Number of Bits in the SFID word.
- f. Set the Start Value for the SFID to the first value in the SFID. This value is typically 0, but it can be any number. Also, set this value to the maximum SFID value if the SFID can count down from a number.
- g. Set the End Value for the SFID to the last value in the SFID. This value is typically the number of minor frames minus one. If the SFID counts down, set this to the lowest value of the SFID.
 - i. Search to Check the number of correct SFID to promote from Search to Check.
 - ii. Check to Lock the number of correct SFID to promote from Check to Lock.
 - iii. Lock to Check the number of wrong SFID to demote from Lock to Check.
 - iv. Check to Search the number of wrong SFID to demote from Check to Search.
- 14. Click the OK button to return to the Async Embedded controls in the Decom window.
- 15. Click the Decom button to launch the Async Embedded Decom window.

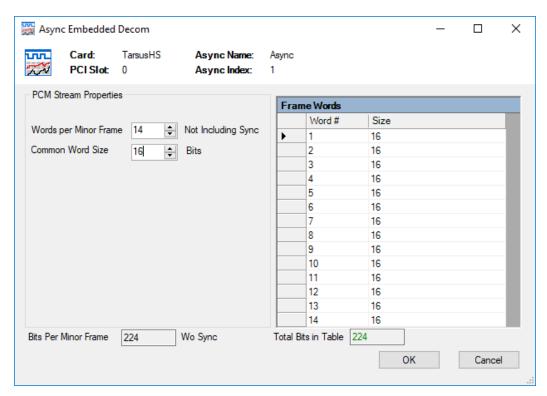


Figure 57 - Async Embedded Decom Window

- 16. The Async Embedded Decom window has controls like the Decom.
 - a. Words per Minor Frame the number of decom words per minor frame not including the frame sync pattern.
 - b. Common Word Size this is the typical or base word size in bits.
 - c. Frame Words Table this table lists each word number and the bits in that word. Each word number can have its number of bits modified.
 - d. Bits per Minor Frame this indicator lists the total bits per minor frame minus the number of bits in the frame sync pattern.
 - e. Total Bits in Table this indicator lists the sum of all the bit lengths from the Bits per Minor Frame table. The value in the Total Bits in Table indicator needs to match the value of the Bits per Minor Frame indicator.
- 17. Set the Words per Minor Frame and Common Words Size controls.
- 18. Check if the value of the Bits per Minor Frame indicator matches the value of the Total Bits in Table indicator. If the values match, then the number in the Total Bits in Table indicator will be green. If the values do not match, then the number in the Total Bits in Table indicator will be red.
- 19. If the values of the Bits per Minor Frame indicator and the Total Bits in Table indicators do not match, then the Async Embedded Decom settings need to be modified. If the asynchronous embedded frame uses a fixed word size, then ensure that the Words per Minor Frame and Common Word size controls are set to the correct value. If the asynchronous embedded frame uses variable bits per word, then ensure that the values in the Frame Words table are correct. The difference between the value of the Bits per Minor Frame and Total Bits in Table indicator might give a clue to which settings need to be adjusted.

- 20. Click ok on the Async Embedded Decom window to return to the Decom Setup window.
- 21. In the Decom Setup window, click OK to accept the changes to the Decom and Async Embedded settings.
- 22. for how to add a Decom Parameter for an asynchronous embedded stream. This section describes using a drop-down box to select the name of the stream source for the decom parameter. This drop-down box is populated with Main Stream as well as the name of each asynchronous embedded stream.

4.7.5 Creating Decom Parameters

Parameters are entities which define how raw data is extracted out of the PCM frame, how the data is scaled or processed, and how the data is visualized. Once defined, Parameters can be displayed in any of the ALTAIR displays (see Using Decom Data Displays).

The Export button creates a CSV file with the decom parameters and their settings. The CSV file can be imported into ALTAIR using the Import button. This allows copying the decom parameters from one setup to another.

1. On the Decom Setup main screen, select the **Parameters** tab. The Parameters screen will be displayed. (See Figure 58 – Parameters Setup below.)

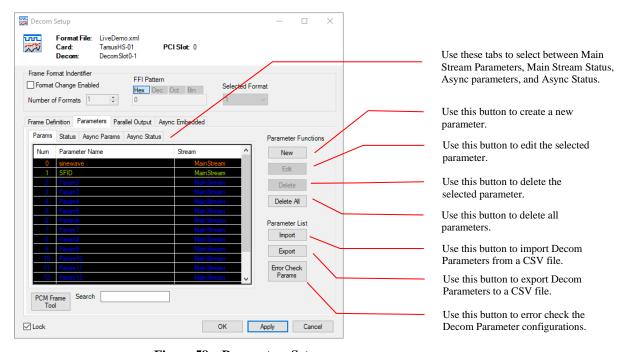


Figure 58 – Parameters Setup

2. Click on the **New** button to be presented with the Parameter Edit screen. (See Figure 59 – Parameter Edit/Add below.) Default settings for the Decom Parameter color, Data Type, and Bit Data Type are set in the Decom tab of the Options window. The

Options window is accessible by selecting View from the menu bar and selecting Options from the menu.

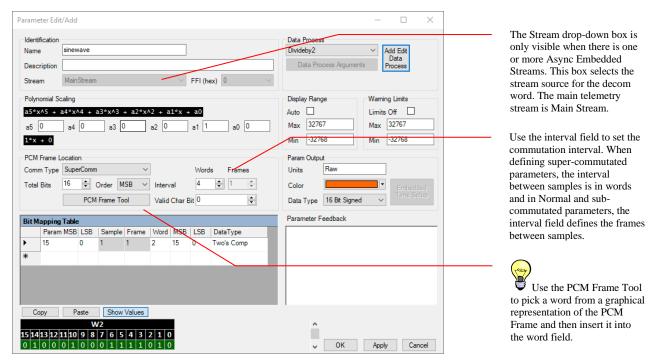


Figure 59 - Parameter Edit/Add

Enter a Name or keep the default name displayed. The Name can include any
combination of characters and symbols. The Name does not have a character limit;
however, it should be kept short due to screen space limitations in the ALTAIR
displays.

Names cannot be duplicated. The software will not allow duplicate names and will not save a new parameter with a duplicate name.

- 4. If the Stream drop-down box is enabled, then select the desired stream source. The Stream drop-down box is enabled when one or more asynchronous embedded streams are added to the Decom setup. The main telemetry stream is listed as Main Stream. Any asynchronous embedded stream is listed by the name given in the Async Embedded control in the Decom Setup window.
- 5. Select the parameter **Commutation Type** from the combo box. The possible commutation types are: Normal, Super Comm, Sub Comm, Random, or Random Normal. This field sets the commutation type for all words used to build this parameter. See the figures below for Commutations Type examples.

In Normal Commutation, the parameter occurs once per minor frame and always occurs in the same word number.

	Sync	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7
Frame 1								
Frame 2								
Frame 3								
Frame 4								

Figure 60 – Normal Commutation

In Super Commutation, the parameter occurs multiple times in each minor frame. The occurrences of the parameter must be evenly spaced by a fixed number of words called the Interval. In the example below, the Interval is the words.

	Sync	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7
Frame 1								
Frame 2								
Frame 3								
Frame 4								

Figure 61 – Super Commutation, Interval 3 Words

In Sub Commutation, the parameter occurs in the same word number but not in every minor frame. In Sub Commutation, the Interval is the number of minor frames between occurrences of the parameter. In the example below, the Interval is two minor frames.

	Sync	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7
Frame 1								
Frame 2								
Frame 3								
Frame 4								

Figure 62 – Sub-Commutation, Interval 2 Frames

In Random Commutation, the parameter can occur in any word in any minor frame. The words are commutated in the order that they appear in the frame.

	Sync	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7
Frame 1								
Frame 2								
Frame 3								·
Frame 4								

Figure 63 – Random Commutation

In Random Normal Commutation, the parameter can occur in any word, but must occur in the same words in every minor frame.

	Sync	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7
Frame 1								
Frame 2								
Frame 3	·							
Frame 4								

Figure 64 - Random Normal Commutation

The FFI is the same as Normal Commutation, except that it denotes that this is the parameter to use for the Frame Format Indicator. There can only be one FFI parameter.

	Sync	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7
Frame 1								
Frame 2								
Frame 3								
Frame 4								

Figure 65 – FFI

- 6. If the selection in step 6 was **Super Comm**, enter an Interval in words. If the selection was **Sub Comm**, enter an Interval in frames.
- 7. Enter the total number of bits for the parameter in the **Total Bits** text box. (This value can be from 1 to 64-bits and will be made up of combinations of bits extracted from up to eight words in a PCM minor frame.)
- 8. Select either MSB or LSB from the combo box. MSB is when the most significant bit is farthest to the left. LSB is when the least significant bit is farthest to the left.
- 9. For Normal, Super Comm, or Sub Comm parameters, enter the mapping information into the Bit Mapping Table. The Copy and Paste buttons allow copying and pasting of the Bit Mapping Table to Excel as Tab delimited data. This option is useful for complicated decom parameters.

This table instructs the ALTAIR software how to extract data from PCM words and concatenate that data into the parameter. The parameter can consist of up to thirty-two independent words. There should be one row in the Bit Mapping Table for each word of data extracted from the PCM stream. (Please refer to Figure 66 – Example of a 32-bit Parameter Created from Two 16-bit PCM Words for a graphical representation of extracting words to create a parameter.) The fields in the bit mapping table can be directly edited by clicking the field and typing the value. A description of each field is as follows:

 Param MSB – This is the most significant bit in the parameter where the data will be stored.

- Param LSB This is the least significant bit in the parameter where the data will be stored.
- Sample Only used only for Random and Random Normal Commutation types.
- Frame Only used for Sub Comm and Random. This is the starting frame number where the desired data is located. Frame numbers count from one to the number of minor frames.
- Word This is the word number in the incoming PCM stream where the desired data is located. The Frame Sync Pattern is defined as Word 0 by convention. The first word after the Frame Sync Pattern is Word 1, even if this is the Sub Frame ID. The word can be entered, or the **PCM Frame Tool** can be used to select a word in the frame.
- Word MSB This is the most significant bit in the word location from where the data is copied.
- Word LSB This is the least significant bit in the word location from where the data is copied.
- Data Type This is how the data word extracted from the PCM stream is represented in memory. When Two's Comp or One's Comp is selected, the data will be represented as positive and negative values. These values will be sign extended when extracted from the PCM stream. The Binary and Binary Coded Decimal (BCD) selections will treat data as positive binary values with no sign extension.

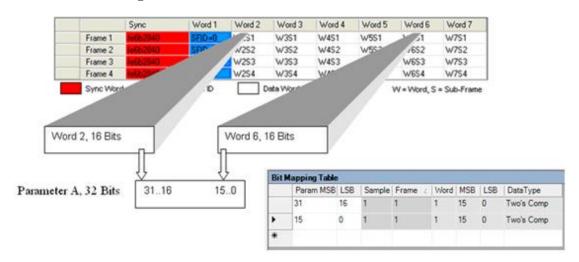


Figure 66 - Example of a 32-bit Parameter Created from Two 16-bit PCM Words

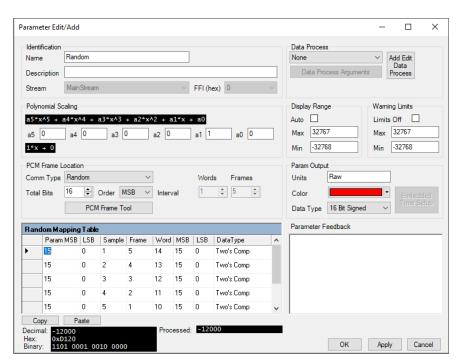


Figure 67 - Parameter Edit/Add Random Commutation

10. For a Random or Random Normal parameters, enter the random sample information into the Random Mapping Table (See Figure 67 – Parameter Edit/Add Random Commutation). The Copy and Paste buttons allow copying and pasting of the Random Mapping Table to Excel as a Tab delimited data. This option is useful for complicated decom parameters.

This table informs the ALTAIR software of two things. First, how to extract data from PCM words and concatenate that data into the parameter. Second, the frame/word locations to sample for the commutation. The fields in the bit mapping table can be directly edited by clicking the field and typing the value.

The Sample column differentiates words that are concatenated to form a parameter from commutation samples. Rows with the same value in the Sample column are concatenated together to form a single parameter. Rows with different values in the Sample column are the samples in the commutation.

In the example below, the parameter is Random Normal commutation, each sample is 32-bit composed of two 16-bit words, and there are two samples. The Random Mapping Table has four rows, each 16-bits. Row 1 and Row 2 are concatenated to form Sample 1. Row 3 and Row 4 are concatenated to form Sample 2. The Random Normal Commutation is composed of Sample 1 and Sample 2 in each minor frame.

	Sync	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
Frame 1									
Frame 2									
Frame 3									
Frame 4									

Rand	Random Mapping Table									
	Param MSB	LSB	Sample	Frame 4	Word	MSB	LSB	DataType		
	31	16	1	1	1	15	0	Two's Comp		
	15	0	1	1	2	15	0	Two's Comp		
	31	16	2	1	7	15	0	Two's Comp		
.0	15	0	2	1	8	15	0	Two's Comp		

Figure 68 – Example Mapping Table for Random Normal Commutation

A description of each field is as follows:

- Param MSB This is the most significant bit in the parameter where the data will be stored.
- Param LSB This is the least significant bit in the parameter where the data will be stored.
- Sample Denotes the difference between commutation samples and words that are combined into one sample.
- Frame Only used for Random and Sub Comm. This is the frame number where the desired data is located. Frame numbers count from one to the number of minor frames.
- Word This is the word number in the incoming PCM stream where the
 desired data is located. The word can be entered, or the PCM Frame Tool can
 be used to select a word in the frame.
- Word MSB This is the most significant bit in the word location from where the data is copied.
- Word LSB This is the least significant bit in the word location from where the data is copied.
- Data Type This is how the data word extracted from the PCM stream is represented in memory. When Two's Comp or One's Comp is selected, the data will be represented as positive and negative values. These values will be sign extended when extracted from the PCM stream. The Binary and Binary Coded Decimal (BCD) selections will treat data as positive binary values with no sign extension.
- 11. Next, set up the display properties by selecting or creating a new Data Process. (See the section on Configuring Data Processing for details.)
- 12. Enter the minimum value for the display range. (This value should correspond to the number of bits in the parameter and can have a minimum value of 4.94066e-324.)
- 13. Enter the maximum value for the display range. (This value should correspond to the number of bits in the parameter and can have a maximum value of 1.79769e+308.)

- 14. Enter a string for the display units.
- 15. Set the display limits by entering a value for the minimum limit. (Display limits are used on most ALTAIR live displays to indicate to the user that data has exceeded a pre-defined threshold.) (This value should correspond to the number of bits in the parameter and can have a minimum value of 4.94066e-324.)
- 16. Enter a value for the maximum limit. (This value should correspond to the number of bits in the parameter and can have a maximum value of 1.79769e+308.)
- 17. Select the display Data Type for the parameter. The parameter data type allows the ALTAIR software to display parameter data in the format of the original sensor that encoded the data. The data type will also affect how the properties of certain display windows work. For example, if a parameter with a data type of **32-Bit Signed** is loaded into a **Meter** window, the floating-point properties will not apply. Please note that Floats have a 23-bit mantissa and any value above the 23-bit mantissa with be an approximation. Doubles have a 52-bit mantissa and any number larger than 52-bits is an approximation.
- 18. Select a color for the parameter being created. The color will be used in all tables and displays. Colors can be used to visually separate parameters, grouping them by commutation type, data type, sensor type, or any other organization of data required by the user.
- 19. When complete press OK to save changes into memory.

The changes are not saved to the computer hard drive. Saving must be done from the main ALTAIR screen.

4.7.6 Word Concatenation

Word Concatenation is combining adjacent bits in different word locations to form a single decom parameter. This is a type of Bit Concatenation that requires the bits to be adjacent in the minor frame. For example, every word in the minor frame is 8-bits and you combine word 2 and word 3 to form a 16-bit decom parameter.

ALTIAR implements Word Concatenation in two ways: Single Line and Multi Line. This nomenclature refers to the number of lines used to define one sample in the Bit Mapping Table (Normal, Super, and Sub Commutation) or Random Mapping Table (Random and Random Normal Commutation).

Single Line Word Concatenation is when a single line in the table uses bits that are not in the selected word. Single Line Word Concatenation can span from the current word to either adjacent word. Multi Line Word Concatenation is when multiple lines in the table build a decom parameter from different word locations.

In the examples below, the frame consists of 8-bit words. Each example Decom Parameter is defined using a different method to get the same 16-bits in the minor frame.

The image below is an example Single Line Word Concatenation where the decom parameter spans right into the higher word number. This is done by setting the Total Bits to 16, WordMSB to 7, and the WordLSB to -8. In this case, WordLSB equal to -8 implies that the decom parameter is using 8-bits from the adjacent higher word in the minor frame (Word 3).

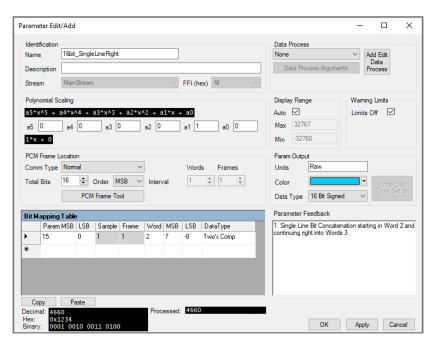


Figure 69 – Example Mapping Table for Single Line Right Word Concatenation

The image below is an example Single Line Word Concatenation where the decomparameter spans left into the lower word number. This is done by setting the Total Bits to

16, WordMSB to 15, and the WordLSB to 0. In this case, WordMSB equal to 15 implies that the decom parameter is using 8-bits from the adjacent lower word in the minor frame (Word 2).

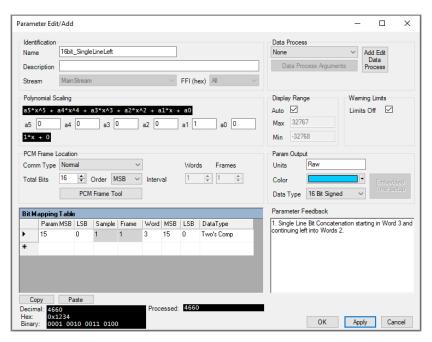


Figure 70 – Example Mapping Table for Single Line Left Word Concatenation

The image below is an example Multi Line Word Concatenation. Total Bits is 16. The Mapping Table has two lines. The first defines the Parameter bits 15 to 8 as word 2. The second defines the Parameter bits 7 to 0 as word 3.

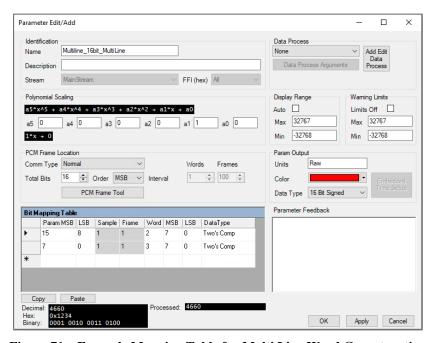


Figure 71 – Example Mapping Table for Multi Line Word Concatenation

4.7.7 PCM Frame Tool

The PCM Frame Tool is a method to visualize the current frame and decom words setup. The PCM Frame Tool can be accessed three ways: from the Decom Toolbar, from the Parameter Tab in the Decom Setup form, and from the Parameter Edit / Add form. When launching the PCM Frame Tool from the Decom Toolbar or from the Decom Setup form, all decom parameters are displayed in the grid. When the PCM Frame Tool is launched from the Parameter Edit / Add form, only the parameter from the Parameter Edit / Add form is displayed in the grid.

The PCM Frame Tool has two sets of radio buttons to configure the display. Either the parameter names or the recently decommutated data can be displayed. The decommutated data is formatted in either Hexadecimal or Decimal format.

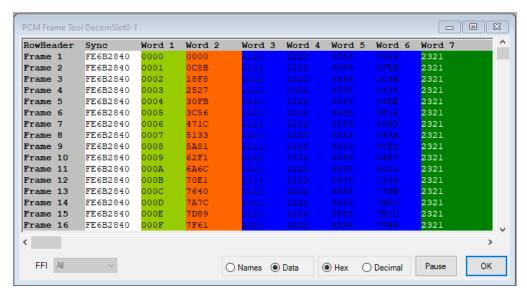


Figure 72 - PCM Frame Tool Launched from Decom Toolbar and Decom Setup Form

The PCM Frame Tool has the following controls:

- 1. FFI Combo box allows the user to select the Frame Format Indicator that is displayed in the PCM Frame Tool.
- 2. Names or Data The PCM Frame Tool can display either the decom parameter name or a data value. The data values are sampled about every 250mS.
- 3. Hex or Decimal Only enabled when the Data radio button is selected. Allows the data display to be in decimal or hexadecimal form.

Regardless of where the PCM Frame Tool is launched, double clicking on a cell will launch the Parameter Edit / Add form for the decom parameter associated with the clicked cell.

Right clicking on a cell brings up a menu with options to Add or Delete. Add will create a new decom parameter for that cell. Delete will delete a decom parameter associated with that cell.

4.7.8 Decom Parameter Import and Export

The most difficult part of setting up telemetry software for a telemeter is configuring the decom parameters. The ALTAIR software includes an Import / Export of the decom parameters via CSV file.

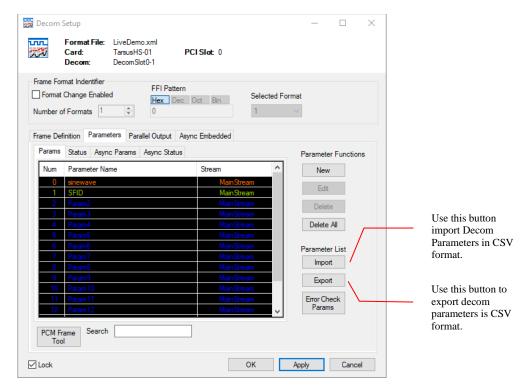


Figure 73 – Decom Parameter Import / Export in the Decom Setup Window

To Import or Export the Decom Parameters, open the Decom Setup window by double clicking on the desired Decom in the Hardware Explorer. Then click on the Parameters tab.

Click the Import button to launch a file open dialog box. Select the desired CSV file to import and click Open.

Click the Export button to launch file save dialog box. Select the file name and location and click Save. The resulting CSV file can be imported into ALTAIR.

4.7.9 Configuring Data Processing

In telemetry applications, data in a PCM stream comes from a variety of sources. The data could be from voltage sources, avionic busses, thermocouples, time sources, etc. Sometimes, the data from these sources is not scaled properly for optimal viewing and analyzing. For example, the voltage from a thermocouple is non-linear. Slight changes at certain temperatures are difficult to visually identify. In this situation, a mathematical algorithm aids in visualization of the data.

ALTAIR provides a unique approach for solving these types of scaling and data manipulation. The software allows the user to create a custom algorithm, apply it to the live PCM data, and view the converted data in a display. ALTAIR supports three kinds of data processes:

- Formula A one-line formula can be entered consisting of one or more parameters and all the mathematical and logical features shown in the buttons.
- C# Function A C# Class/Function can be completed and compiled inline. This
 function must conform to the Microsoft C# Language definitions and should only
 be used by experienced C# developers. A blank template provides the C# class
 naming and structure. There are also two examples available in the Process Edit
 Window.
- Plug-In A compiled C# dynamic linked library (DLL) of code written for a specific data process. Each DLL can contain a multiple Data Process. ALTAIR includes three Plug-Ins: Standard Data Processes, Statistical Data Processes, and FIR Filter Data Process. Contact Ulyssix for a Software Development Kit and example C# solution for developing Plug-In Data Processes.

The section below offers information on creating a data processing algorithm:

- 1. On the ALTAIR main screen, select a Decom in the Hardware Explorer window, select Decom on the toolbar, press New, and then **Data Processing**. The Available Processes setup form will open as shown below.
 - a. The top list contains the currently existing Formula and C# Function Data Processes.
 - b. Self-Triggered Data Process Plug-Ins modify the raw value of a Decom Parameter. For example, applying a logarithmic formula to a raw sensor value. A Self Triggered Data Process only depends on a single Decom Parameter.
 - c. Parameter-Triggered Data Process Plug-Ins create a new Math Parameter based on one or more Decom Parameter. For example: If Word 2 is 0x00, then the result is Word 3 multiplied by four. Else, the result is Word 3 divided by two.

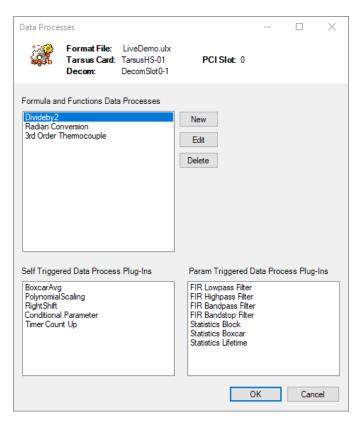


Figure 74 – Initial Data Process Setup Screen

2. Click on the **New** button to be presented with the Process Edit window. (See Figure 75 – Formula Editor in the Process Edit screen below.)

Figure 75 – Formula Editor in the Process Edit Window

3. At the top of the Process Edit window there are radio buttons for Formula and C# Function. The Process Edit window in the image above shows the Formula Editor. The Formula Editor is visible when the Formula radio button is selected. When the C# Function radio button is selected, the Process Edit window shows the C# Function Editor (see below). Both the Formula Editor and the C# Function Editor provide minimal syntax highlighting.

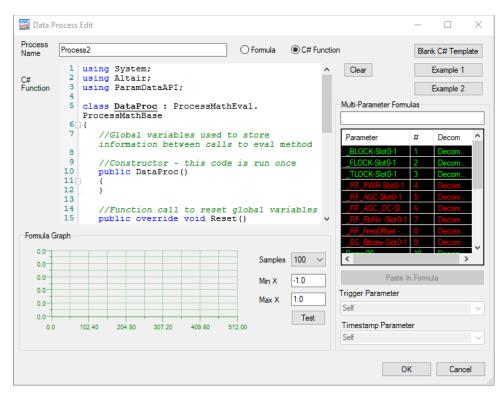


Figure 76 - C# Function Editor in the Process Edit Window

4. Enter a process name or keep the default name displayed. The process name entered can be made up of any combinations of characters or symbols. The length of the process name does not have a character limit; however, it should be kept as small as possible due to screen space limitations.

Process names cannot be duplicated. The software will not allow duplicate names and will not allow saving of the data process.

- 5. The next step is to create the Data Process. Immediately below are instructions for creating a Formula Data Process. And further down are instructions for creating a C# Function Data Process.
- 6. Create a Formula Data Process. The process and interaction of creating a formula is like using a scientific calculator with graphing ability.
 - a. The formula can be made up of any valid combinations of mathematical functions and operations shown in the Operators section of the screen.
 - b. The <param> button is used to represent the raw data for the parameter being processed. (This is like the **x** variable in a mathematical equation.)
 - c. Multi-parameter formulas are created by selecting a parameter from the list box on the right-hand side of the screen and then clicking Paste in Formula button. After clicking the Paste in Formula button, a pop-up window presents the option of using Raw or Processed data. Raw data is the value extracted from the telemetry stream before any Data Processes are applied. Processed data is the result of an applied Data Processes. Any number of parameters can be used in an algorithm.

- d. When using more than one parameter in a formula, the Trigger Parameter determines at what point in time the data processing algorithm is executed.
- e. The Timestamp Parameter determines the source of the time stamp for data from the formula.
- f. The following table shows examples of valid formulas:

Formula Example	Description
-0.04886825+(19673.14503* <param/>)+(-218614.5353 * pow(<param/> ,2))+(11569199.78*pow(<param/> ,3))	This shows an example of a polynomial equation for scaling thermocouple data.
<pre><param/> / 2.0</pre>	Simply divide the raw data by 2.0
<pre><param/>*(180.0/pi)</pre>	Convert the data from degrees to radians for use in a 3D Model which requires radians.
<pre><param/>-1005</pre>	Remove an offset out of the incoming data.
abs(<param/>)	Get the absolute value of the parameter.
<pre><param/> * pow(2, 16)</pre>	Multiply the data by 2 raised to the 16 th power.
(29.45 * <param/>) + 30	Simple $mx + b$ scaling where $m=29.45$, $b = 30$
param[1].raw + param[2].raw	Derive a parameter by adding raw data from parameter number 1 and 2.

Table 7 – Example Data Processing Formulas

- 7. Create a C# Function Data Process. The process of creating a C# function is like using Visual Studio, Notepad++, or any other software integrated development environment.
 - a. In the upper right-hand corner of the Process Edit window there are three buttons: Blank C# Template, Example 1, and Example 2. Each fills the C# Function text box with C# code.
 - b. The structure of a C# function includes three required Using statements for System, ALTAIR, and ParamDataAPI. After the Using statements, there is the class definition for DataProc. The DataProc class contains a location for global variables, the constructor for DataProc and a method for eval. The Names for the class, constructor, and method cannot be changed.
 - c. Multi-parameter formulas can be created by using the list box on the right side of the screen or by typing the command.
 - i. Select a parameter from the list box on the right-hand side of the screen and then click Paste in Formula button. After clicking the Paste in Formula button, a pop-up window presents the option of using Raw or Processed data. Raw data is the value extracted from the telemetry stream before any Data Processes are applied. Processed data is the result of an applied Data Processes. Any number of parameters can be used in an algorithm.
 - ii. The command for accessing a parameter is: param[num] or param["name"] where num is replaced with the parameter number and name is replaced with the parameter name. The parameter name must be in double quotes. The parameter name is not capitalization sensitive.
 - d. When using more than one parameter in a formula, the Trigger Parameter determines at what point in time the data processing algorithm is executed.

- e. The Timestamp Parameter determines the source of the time stamp for data from the formula.
- 8. Once the Formula or C# Function is entered, use the Test feature to validate the Formula or C# Function. The Test feature uses the Samples drop-down box, the Min textbox, and the Max textbox to determine the evaluation range for the Formula or C# Function. Click the Test button to evaluate the function and update the Formula Graph. Also, the number of samples and total evaluation time is displayed below the graph. This gives an indication of the CPU impact of the Formula or function. If there is a syntax error in the Formula or Function, then the Process Errors dialog box appears listing the errors.
 - a. The error messages displayed are actual messages generated by the compiler which can sometimes be misleading. Common errors are missing operators, mismatched parentheses, or simple typing errors. When encountering an error, review the formula item-by-item to be certain there is an operation between every function, and all parentheses are used properly. Parentheses should always be used to assure proper precedence.

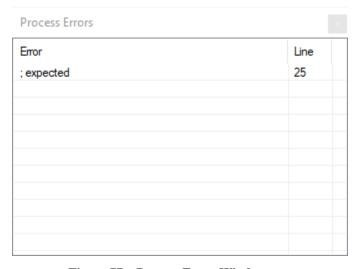
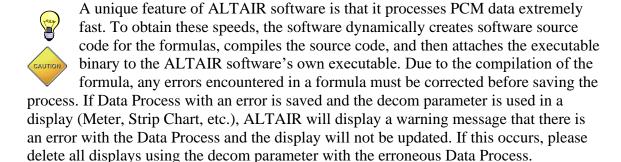



Figure 77 – Process Error Window

9. When satisfied with the results, press OK to save changes to the memory.

The changes are not saved to the computer hard drive. Saving must be done from the main ALTAIR screen.

4.7.10 Configuring Decom Outputs (DAC Out)

The Tarsus3 / Tarsus4 provides several methods of sending decommutated data from the card. It can extract raw PCM digital Audio data from the PCM stream, then the audio data is demodulated by the Tarsus3 / Tarsus4 hardware, converted into analog form, and routed to one of two digital-to-analog-converter (DAC) outputs included on the card.

 On Board DACs – The hardware contains additional circuitry with two built in Digital to Analog converters (DACs), each containing programmable analog offset and gain control. The DAC hardware circuitry provides a convenient way of outputting raw data extracted from the PCM stream in analog form. The data can then be viewed on external equipment such as oscilloscopes, meters, or even strip chart recorders.

Note: The data going to the DACs is only raw PCM words, not parameter data which can be concatenated and processed.

To configure decom outputs:

1. On the ALTAIR main screen, select a Decom in the Hardware Explorer window and then select *Decom\Decom Outputs* from the main menu at the top of the screen. This setup form is used to set the parameter to be output through one of the two on board DAC's. The Decom Outputs setup screen is displayed below.

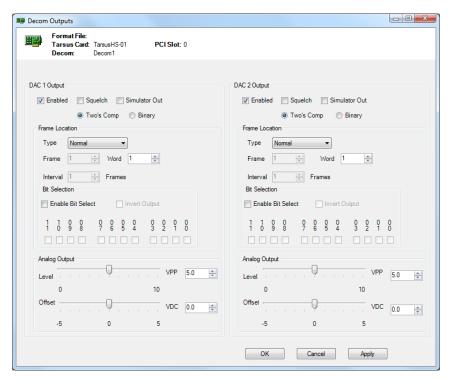


Figure 78 – Decom Outputs Setup

- 2. Enable the Decom DAC output by clicking on the **Enabled** box. If not using the **Squelch** or **Simulator Out** feature, move along to step 5.
- 3. Enable **Squelch** to suppress white channel noise on the audio signal. Enable **Simulator Out** to send the simulated PCM data out of the DAC connector.
- 4. Choose **Two's Comp** for a signed representation of binary data or **Binary** for unsigned data represented by a 1 or 0.
- 5. Select **Super Comm**, **Sub Comm**, or **Normal** for the type of commutation to extract. (Default is Normal commutation.)
- 6. Enter the Word location in the PCM frame to extract for sending to the DAC.
- 7. Enter the Interval in words if Super Comm or frames if Sub Comm for the data to be sampled and sent to the DAC.
- 8. Select from **0** to **5** Volts Peak-to-Peak (Vpp) for the analog output level.
- 9. Select from **-2.5** to **2.5** Volts DC (VDC) for the analog output offset.
- 10. If using two DAC outputs, repeat steps 2 through 7 for DAC2 outputs.
- 11. Click the Apply button to immediately send the changes to the hardware. Click OK to store the changes to the in-memory database. Click Cancel to abort changes.

Note: To play digital audio, users must set up self-powered speakers and optionally use an adjustable Low-pass filter. The Tarsus3 / Tarsus4 board will not be able to supply enough power to run speakers.

Clicking OK does not save the changes to the computer hard drive; it simply stores these changes in the in-memory database. Saving the configuration file to the hard drive must be done from the main ALTAIR screen.

4.7.10.1 Configuring Single Bit Output

Each on board DAC allows for the output of a single selected bit. Of the most significant 12-bits of a word, the user can select one bit to be output via the DAC. For example: If there is a 16-bit word (calling bit 0 the LSB), only bits 4 - 15 would be available for selection. However, in the DAC form, the bits will be listed as 0-11 no matter what the word size. In this scenario, bit 4 of the word would correspond to bit 0 on the DAC output form. (See Figure 79 – Single Bit DAC Output below.)

To use the single bit output feature, follow the step-by-step procedure below:

- 1. Open the Decom Outputs Form. Select Decom in the Main Menu and then Decom Outputs.
- 2. Check the box next to enabled. Then check the box to **Enable Bit Select**.
- 3. Select to invert the output or not (where 1 becomes 0 and 0 becomes 1) by checking the **Invert Output** checkbox.
- 4. Select any ONE of the bit checkboxes corresponding to the desired bit for output. For example: If I wish to output bit 1 (LSB=0) of a 10-bit word then select bit 3 of this section because the word is being MSB aligned with bit 11 on this form.

For bit selection, the word is MSB aligned with bit 11 on this form. If the MSB of the word is bit 9, that would correspond to bit 11 on this form. In other words, the MSB of the word is ALWAYS in bit 11 of this form.

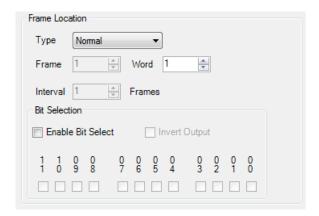


Figure 79 – Single Bit DAC Output

4.8 Configuring the IRIG Time

The Tarsus3 / Tarsus4 and ALTAIR software system has two choices for acquiring time and time stamping PCM data:

Computer Time – With computer time, the Tarsus3 / Tarsus4-01 hardware is initialized by the PC computer during a Decom download. The time is then maintained by the Tarsus3 / Tarsus4-01 hardware using an internal 86.0 MHz clock oscillator that is stable to \pm 25 ppm. The internal maintained time is inserted into the header of the data packets that are transferred to the PC for displaying and archiving.

IRIG Time Code Reader – The IRIG time code reader involves separate hardware circuitry in the Tarsus3 / Tarsus4-01 that reads IRIG-A, IRIG-B, IRIG-G, NASA 36, and DC Input – IRIG B DC LS/TTL from an independent input, demodulate the time, and insert the time into the header of the data packets that are transferred to the PC for displaying and archiving.

Note: IRIG Time is sampled at the last bit in the Frame Sync Pattern of each minor frame.

1. On ALTAIR main screen, select Time in the Hardware Explorer window and select **Time Setup** from the Time option in the menu bar.

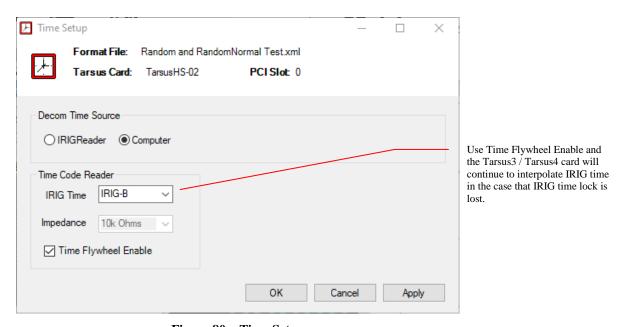


Figure 80 – Time Setup

- 2. Choose a **Decom Time Source**: IRIG Reader or Computer time.
- 3. For the IRIG Time, select from IRIG-A, IRIG-B, IRIG-G, NASA 36, IRIG-B DC LS-TTL in the drop-down box.

- 4. **Time Flywheel Enable** ensures time continues to be interpolated in the event of IRIG time lock loss. If this is not selected, the time output freezes at the last IRIG time lock value.
- 5. Click the **Apply** button to immediately send the changes to the hardware. Click **OK** to store the changes to the in-memory database. Click **Cancel** to abort changes.

For bit selection, the word is MSB aligned with bit 11 on this form. If the MSB of the word is bit 9, that would correspond to bit 11 on this form. In other words, the MSB of the word is ALWAYS in bit 11 of this form.

4.9 Configuring the Simulator

The Tarsus3 / Tarsus4 has a programmable Simulator that generates up to a 40Mbps PCM data stream and clock, and then outputs it to an output connector. The simulator has two modes of operation: one mode lets the user enter fixed data patterns and functions and a second mode that plays back previously archived data files (.tad).

The single channel Tarsus3 / Tarsus4-01 and the Bald Eagle RF / Bald Eagle RF4-01 have a differential output for Simulator Data and Simulator Clock. However, in the dual channel Tarsus3 / Tarsus4-02 and Bald Eagle RF / Bald Eagle RF4-02 these differential outputs are used by the second Bit Sync. To provide differential output for the Simulator, ALTAIR has the "Sim Diff Enable" checkbox. Checking this box will output the Simulator data from BS2-OUT1 and the Simulator Clock from B2-CLK1 instead of the associated Bit Sync2 Data and Clock Out.

1. On the ALTAIR main screen, select a Simulator in the Hardware Explorer window and select Setup from PCM Simulator in the menu bar. The Simulator Setup window is below.

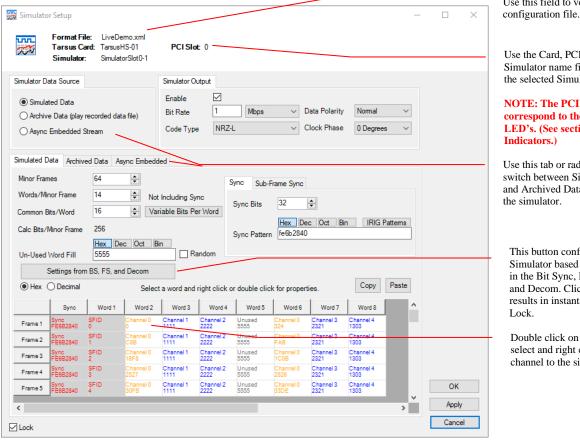


Figure 81 – Simulator Setup

2. Check the **Enable** box to enable the simulator output.

Use this field to verify the

Use the Card, PCI Slot, and Simulator name fields to verify the selected Simulator.

NOTE: The PCI Slot will correspond to the Hardware LED's. (See section 3.2.1 LED

Use this tab or radio buttons to switch between Simulated Data and Archived Data for setting up

This button configures the Simulator based on the settings in the Bit Sync, Frame Sync, and Decom. Clicking this button results in instantaneous Frame

Double click on any word or select and right click to add a channel to the simulator frame.

- 3. Select **Simulated Data** or **Archived data** for the source of simulated data.
- 4. Enter a **Bit Rate** and **Bit Rate Units** from the drop-down selection box.
- 5. Enter the **Code Type** for the output of the Simulator. The output code types are non-return to zero level (NRZ-L), non-return to zero mark (NRZ-M), non-return to zero space (NRZ-S), bi-phase level (BIΦ-L), bi-phase mark (BIΦ-M), bi-phase space (BIΦ-S), randomized non-return to zero RNRZ-11, and RNRZ-15.
- 6. If **Simulated Data** was selected in Step 3, then click the Simulated Data tab and go to step 7. Otherwise click the Archived Data tab and skip ahead to step 16.
- 7. Enter the number of **Minor Frames**.
- 8. Enter the number of **Words Per Minor Frame**. This value does not include Frame Sync Pattern.
- 9. Enter the number of **Sync Word Bits** found in the Frame Sync Pattern.
- 10. Enter the **Sync Pattern** for the telemetry frame.
- 11. Select the **Sub-Frame Sync** tab and define the sub-frame sync settings.
- 12. Enter the size of the **Common Bits per Word**.
- 13. If the frame does not use a common word size, then click the **Variable Bits Per Word** button to edit the Simulator Variable Bits Per Word form. This form allows the user to change the number of bits of each word in the frame. The values in the Variable Bits Per Word Table can be copied to Excel, modified, and pasted back into table.
- 14. Verify that the **Calculated Bits Per Minor Frame** value matches the desired size for the telemetry frame. This value is auto calculated based on the entries in the Simulator Setup window.
- 15. Enter the **Un-Used Word Fill** pattern to be loaded in all words in the simulator frame that are not defined with either a fixed value or a function value.
 - a. Checking the Random control fills the unused words with random numbers. This creates a pseudo-random frame fill.
- 16. The last step is to define the Simulator Channels. Each Simulator Channel defines the data type, commutation type, and the location within the frame. Double click on any word location in the frame to launch the Simulator Channel Edit form.

The Copy button copies the Simulator frame to the clipboard as Tab delimited data. The data can be pasted into Excel, modified, and copied back to the clipboard. The Paste button in the Simulator form pastes the modified frame to the Simulator grid. Please note that when you paste the data into the Simulator grid, each value is pasted as a Sub Comm word that only occurs once per major frame. Please note that the Simulator frame data is copied using numeric format selected: either Hex or Decimal.

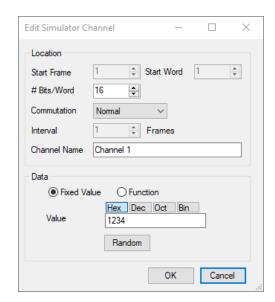


Figure 82 – Edit Simulator Channel Form

To define a Simulator Channel:

a. Enter the number of bits for the word location in the **#Bits/Word** control.

If more than one minor frame is used, the size of a word in a specific location must be the same in all sub-frames at that word location.

- b. Select a **Commutation** Normal, Super Comm, Sub Comm, Random, or RandomNormal.
- c. If the commutation is Super Comm, enter the **Interval** in words.
- d. If the commutation is Sub Comm, enter the **Frames**.
- e. If the commutation is Random, click the **Setup** button to launch the Word and Frame Position window. In the window, enter the word and frame locations in the format:
 - i. W1, F1; W2, F2; W3, F3.
 - ii. W is for word location and F is for frame locations.
 - iii. Words are followed by a comma. Frames are followed by a semi colon.
- f. If the commutation is RandomNormal, click the **Setup** button to launch the Word Position window. In the window, enter the desired word locations in the format:
 - i. W1; W2; W3.
 - ii. W is for word location.
 - iii. Words are followed by a semi colon.
- g. Change the **Channel Name** from the default value if desired.
- h. Enter a **Fixed Value** or **Function** for the data type.
- i. If **Fixed Value** was selected in Step H, go to Step J, otherwise skip ahead to Step K.
- j. Enter the **Fixed Value** for the simulator channel. Clicking the Random button will set the **Fixed Value** with a random number of the size selected in the

- **#Bits/Word** control. This value can be entered as any length; however, it will be truncated to the bits per word setting for this channel.
- k. Select a **Function** for the simulator channel from the drop-down selection box.
- Enter the number of points per period for the function in the **Points/Period** control.
- m. Press **OK** to insert the simulator channel into the simulator frame and return to the main simulator screen.
- 17. Repeat Step 11 for all Simulator Channels the Simulator telemetry frame. When finished, skip ahead to step 20.

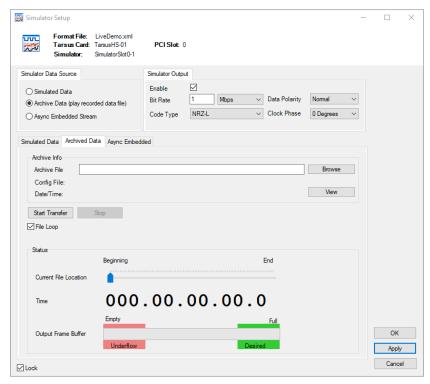


Figure 83 – Archive Simulator

- 18. For **Archived Data** playback, click the **Browse** button and select the archive file. The allowed file types:
 - a. TAD Tarsus Archive Data file. This is the default file format that ALTAIR saves time stamped frame synchronized telemetry data. See Appendix B for more information.
 - b. PAD Padded Binary Data file. This is a binary file built from 32-bit words. If the frame size does not use the entire last 32-bit word, the unused bits are zero filled. Each minor frame begins at the most significant bit of a 32-bit word.
 - c. PAC Packed Binary Data file. This is a binary file where the binary data is packed together. There is no zero filling.

- d. CH10 or C10 Chapter 10 files. This Licensed Options play a PCM channel recorded in Chapter 10 format. ALTAIR supports Chapter 10 PCM Modes of Packed, Throughput, and Throughput Aligned.
- 19. Check the **File Loop** checkbox if desired. If checked, when ALTAIR reaches the end of the archive file, it loops back to the beginning of the file and continues playing the data.
- 20. Press **Start Transfer** to start the archive file playback.
- 21. The **Current File Location** indicator displays the location inside the archive file during playback. During playback, this indicator will move from Beginning to End and then repeat playback from the beginning if **File Loop** is checked. The **Output Frame Buffer** indicator shows the real-time status of the hardware outputting the archived data.
- 22. Click **Apply** to immediately send the changes to the hardware. Click **OK** to store the changes to the in-memory database. Click **Cancel** to abort changes.

Clicking OK does not save the changes to the computer hard drive; it simply stores these changes in the in-memory database. Saving the configuration file to the hard drive must be done from the main ALTAIR screen.

4.10 Configuring the Archive

The ALTAIR software provides a method of storing data received from the Tarsus3 / Tarsus4 hardware directly to the computer's hard disk drive as binary files. The stored data can be analyzed by third party software packages or played into the ALTAIR software. ALTAIR stores two types of binary files: Tarsus Archive Data (TAD) and Receiver Archive Data (RAD). More information about these binary files can be found in Appendix B.

To configure the Tarsus3 / Tarsus4 Archive, perform the following steps below:

1. Select a Frame Sync in the Hardware Explorer window, click Archive on the menu bar, and then select Archive Setup to launch the Archive Setup Form.

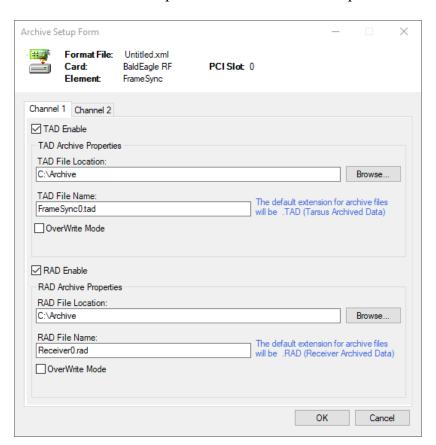


Figure 84 – Archive Setup

2. To enable archiving for the device selected, select the **Enable** box.

There must be at least one Frame Sync element with the Archive Enabled to record data. The Record button on the Archive Toolbar will be disabled if there are no devices enabled.

- 3. Use the browse button to set a location on the hard drive to store the archived file.
- 4. To overwrite a single file each time, an archive record session is started, select the **OverWrite Mode**. To write the archived data in separate files for each archive record session, un-select the **OverWrite Mode**. The file name entered will have the underscore character and an occurrence number automatically appended to the end if the overwrite mode is not selected.
- 5. When complete, press **OK**.

Note: This will automatically set the corresponding playback filename to the recorded filename. This allows the user to immediately view the recorded data by clicking the Analyze button without having to set the playback filename.

Clicking OK does not save the changes to the computer hard drive; it simply stores these changes in the in-memory database. Saving the configuration file to the hard drive must be done from the main ALTAIR screen.

4.11 Configuring the Receiver

4.11.1 Receiver Setup Window

The Tarsus3 / Tarsus4 has an optional daughter card containing receiver hardware. This configuration is referred to as the Bald Eagle RF / Bald Eagle RF4. A Bald Eagle RF / Bald Eagle RF4 card has a receiver in the ALTAIR Hardware Explorer. A Bald Eagle RF / Bald Eagle RF4-01 has one receiver. A Bald Eagle RF / Bald Eagle RF4-02 has two receivers. Select a Receiver in the Hardware Explorer. Either double click the Receiver or click the setup icon in the toolbar to launch the Receiver Setup window.

The Receiver Setup window has Standard and Advanced modes. A combo box in the bottom left corner switches between Standard and Advanced. The Standard Receiver Setup window has settings for the Band, RF Frequency, Bit Rate, Modulation Type, Diversity Combiner, and Without PreMod Filter. ALTAIR uses the Bit Rate to calculate the required IF Bandwidth Filter and Output Filter Settings. To choose the filter settings, please use Advanced mode.

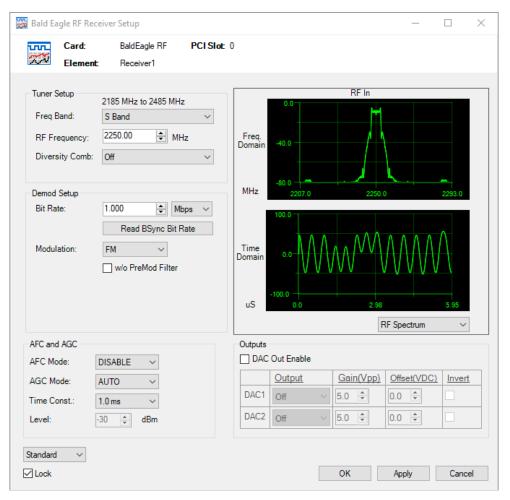


Figure 85 – Bald Eagle RF / Bald Eagle RF4 Receiver Standard Settings

The Advanced Receiver Setup window has five sections: Tuner Setup, Demod Setup, FFT and Time Displays, AFC and AGC, and Outputs. The Tuner Setup section configures the RF front end of the receiver. The Demod Setup section configures the demodulator for the receiver. The Displays section shows the Frequency Domain and Time Domain plots of the data. The Frequency Domain plot is generated using the Fast Fourier Transform (FFT). The controls in the AFC and AGC section configure the Auto Frequency Control and then Auto Gain Control. And the Output section configures the output signals from the Receiver to the Bald Eagle RF/Bald Eagle RF4's two DAC BNC outputs.

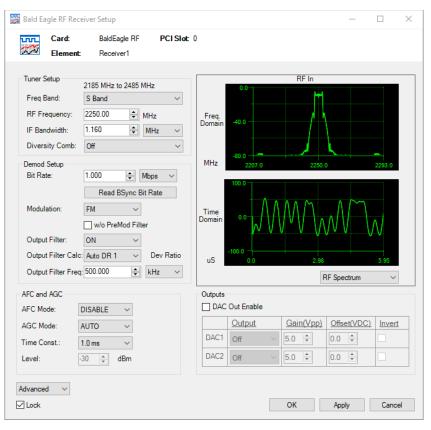


Figure 86 - Bald Eagle RF / Bald Eagle RF4 Receiver Advanced Settings

Tuner Setup:

- 1. Frequency Band Select the desired frequency band in the combo box. The allowed frequency range will appear above the combo box. The frequency band selection will limit the allowed RF Frequency entries.
- 2. RF Frequency This numeric entry control sets the RF Center Frequency. The allowed range for this control is set by the selection in the Frequency Band combo box. The allowed frequency range is displayed above to the Frequency Range combo box.
- 3. IF Bandwidth The numeric entry and combo box set the bandwidth and bandwidth units for the IF filter. The suggested value is 1.2 * Bit Rate for FM PCM signals and 0.78 * Bit Rate for SOQPSK

4. Diversity Combiner – Select the option to enable Diversity Combiner as Best Source or Optimal Ratio. The Diversity Combiner uses both receivers to recover a better signal baseband signal than either receiver recovers on its own. This feature is available only on the Bald Eagle RF / Bald Eagle RF4-02.

Demod Setup

- 1. Bit Rate The numeric entry and combo box set the Bit Rate. The bit rate is used in the demodulation calculations.
- 2. Read BSync Bit Rate This button sets the Bit Rate numeric entry and Bit Rate Units combo box with the setting from the Bit Sync. This button ensures that the Receiver Demod and Bit Sync are using the same Bit Rate.
- 3. Modulation This combo box selects the modulation type. Available choices are FM, BPSK, QPSK, GSMK, and SOQPSK.
- 4. W/o PreMod Filter This check box indicates if the incoming modulated PCM signal is Pre-Mod filtered. When a signal is not Pre-Mod filtered, the demodulator needs to compensate for the higher required bandwidth. Available for FM only.
- 5. Output Filter This combo box selects if the Output Filter is on or off. When applied, the Output Filter cleans up noise in the demodulated signal.
- 6. Output Filter Calc This combo box selects the method for calculating the cutoff frequency for the Output Filter. The options are Auto DR 2, Auto DR 4, Auto DR 8, and Manual. The Auto DR settings use the IF Bandwidth setting to determine the Output Filter cutoff frequency. Auto DR 2 is one half the IF Bandwidth. Auto DR 4 is quarter half the IF Bandwidth. Auto DR 8 is one eight the IF Bandwidth. Manual mode allows the user to set the cut off frequency in the Output Filter Freq controls.
- 7. Output Filter Freq This numeric control and combo box set display the cut off frequency for the Output Filter. When the Output Filter Calc combo box is set to Manual, these controls will also set the Output Filter cut off frequency. The allowed range is the IF Bandwidth setting down to the IF Bandwidth divided by 128.

AFC and AGC Setup

- 1. AFC Mode This combo box turns the Auto Frequency Control on and off. Auto Frequency Control tracks the changes in the RF Carrier Frequency and automatically adjusts the RF Tuner to match the input RF signal.
- 2. AGC Mode This combo box sets the AGC mode to Auto, Manual, or Off. In Auto Mode, the user selects a Time Constant for the AGC. In Manual Mode, the user selects a gain level.
- 3. Time Constant Sets the period used for monitoring the incoming signal to calculate the gain and offset for the AGC. Used with AGC Mode is Auto.
- 4. Level Sets a fixed gain level for the AGC. Used when AGC Mode is Manual.

Displays

The two displays show the Frequency Domain and the Time Domain for the incoming signal. The incoming signal is selectable using the combo box below the Time Domain Plot. The options are RF Spectrum or Demod Out Filtered. The RF Spectrum

selection displays the incoming modulated RF spectrum. The Demod Out Filtered shows the output of the demodulated data after it exits the Output Filter.

DAC Outputs

The controls in the Output section set up the signals for the DACs. The Bald Eagle RF has two DACs / Bald Eagle RF4 has four DACs. The Decoms and Receivers share the DACs. Applying settings to the DAC overwrites the previous settings. The hardware is configured by the last applied setting. The two DACs have the same controls.

- DAC Out Enable This enables the rest of the Output controls as well as configures the Bald Eagle RF / Bald Eagle RF4 card for the Receiver to use the DACs.
- 2. Output This combo box selects the output for the given DAC. The options are Off, Demod, or AGC. When Off is selected, no changes are made to the current DAC settings for other functionalities that use the DAC. Demod selects the demodulated analog data for the selected DAC. AGC selects the AGC gain for the selected DAC.
- 3. Gain (Vpp) This numeric control sets the gain level for the selected output signal. The Gain controls the maximum and minimum value for the selected DAC output. The max value is 5 Vpp. The min value is 0 Vpp.
- 4. Offset (Vpp) This numeric control sets the offset level for the selected output signal. The Offset controls the center value for the selected DAC output. The max value is 2.5 Vpp. The minimum value is -2.5 Vpp.
- 5. Invert This checkbox controls if the signal for the selected DAC is inverted.

4.11.2 Receiver Waveform Display

The Receiver Waveform window is accessible by clicking on a receiver in the Hardware Explorer and then clicking the image on the tool bar as shown below.

Figure 87 - Receiver Waveform Icon

The Receiver Waveform Display default setting is the Fast Fourier Transform (FFT) of the data. The user can change the display to the Time Domain either by using the Display Properties window or by right clicking on the display and using the pop-up menu.

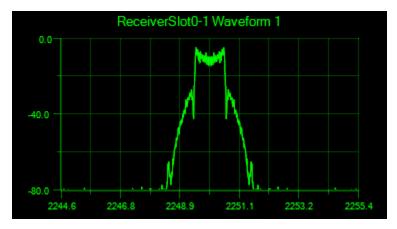


Figure 88 – Receiver Waveform Frequency Display

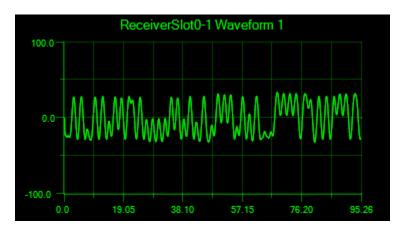


Figure 89 – Receiver Waveform Time Display

Right clicking on the Receiver Display Waveform Display shows a pop-up menu with options to change the RF Source, change between Frequency and Time Domains, and to Pause / Run the display.

The Receiver Waveform Display has two sources: RF Spectrum and Demod Output Filtered. The RF Spectrum is the input to the receiver (displayed above). The Demod Output Filtered is the filtered output of the demodulator. The time domain plot is the data that the receiver feeds to the Bit Sync.



Figure 90 - Receiver Waveform Display Properties

The Receiver Waveform Display has a Cursor Mode that is enabled in the Display Properties by setting the property "User Cursors" to True. Cursor Mode is best used when the Receiver Waveform Display is paused. Enabling Cursor Mode adds a white vertical line cursor and the X Y values of the mouse location to the display. Cursor Mode has three states: Primary Cursor, Secondary Cursor, and Delta. Primary Cursor is when no cursors are locked and the X Y values are of the current white cursor's position. A left mouse click locks the cursor position and transitions into Secondary Cursor. In Secondary Cursor, the first cursor is yellow and is locked in place. The X Y display shows the position of the first cursor. Left clicking the mouse locks the second cursor and transitions into Delta. In Delta, both cursors are yellow and locked in place. The X Y display shows the difference between the two cursors.

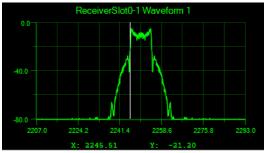
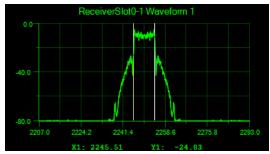



Figure 91 – Receiver Waveform Display Primary Cursor

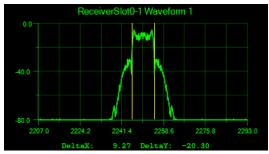


Figure 92 – Receiver Waveform Display Secondary Cursor and Delta Cursor

4.11.3 Receiver Waterfall Display

The Receiver Waterfall Display is accessible by clicking on a receiver in the Hardware Explorer and then clicking the image on the tool bar as shown below.

Figure 93 - Receiver Waterfall Icon

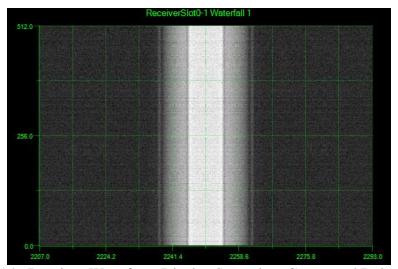


Figure 94 – Receiver Waveform Display Secondary Cursor and Delta Cursor

The Receiver Waterfall Display is a time sequence of Fast Fourier Transform (FFT) calculations displayed as a gray scale contour. The figure above is a waterfall of a 1Mbps FM spectrum. The bright white is the flat top of the FM. The gray bands on each side are the shoulders.

4.11.4 Receiver Status Words

The Bald Eagle RF / Bald Eagle RF4 Receiver has the following status words:

• _RF_AGC_DC is the envelope of the auto gain control value for a Receiver in the Bald Eagle RF / Bald Eagle RF4.

- _RF_AGC is the auto gain control value for a Receiver in the Bald Eagle RF / Bald Eagle RF4. The range is 0 to 73dB and the parameter is measured in 1dB increments. The AGC adjusts based on the selected AGC Mode and the AGC Time Constant.
- _RF_EbNo is the EbNo estimate for the Receiver in the Bald Eagle RF / Bald Eagle RF4. Please note that this value is an estimate because the noise of the incoming signal is estimated due to the IF filter.
- _RF_FreqOffset is the frequency offset, measured in kHz, between the incoming signal and the receiver setting.
- _RF_PWR is the measure measured at the input to a Receiver in the Bald Eagle RF / Bald Eagle RF4. The range is -128dB to 5dB and the value is measured in 0.25 dB increments. The Power is measured before the AGC and is not affected by the AGC settings.

The Bald Eagle RF / Bald Eagle RF4 Receiver Status Parameters are like any other parameter in ALTAIR. They can be displayed in Meters, Strip Charts, or any other display.

Chapter 5 Using ALTAIR Software

5.1 Display Pages

Then the main area inside of the ALTAIR window is the Display Page. This is where the various data displays are organized. ALTAIR supports unlimited display pages. Each Display Page is an XML file saved with the DP file extension. The display pages are switched using the Display Page combo box located next to the Save button in the File Toolbar.

Please note that changing the display page in the Display Page combo box saves any changes to the current display page before loading the new display page.

The Menu Bar has a Display entry. This menu contains commands to add, modify, and save display pages:

- New Display Page creates a new blank display and adds it to the Display Pages Combo Box.
- Open Display Page uses an Open File Dialog to select a display page to open.
- Save Display Page uses a Save File Dialog box to save the current display page.
 Can be used to create a copy of the current display page by saving it with a new name.
- Rename Display Page uses a Save File Dialog box to rename the current display page to a new name.
- Delete Display Page deletes the display page selected in the Display Page combo box.

5.2 Display Windows

Display windows are additional Display Pages that are in a separate window. Display Windows are used for systems with multiple displays or to create multiple display windows for fast switching. The controls for the Display Pages are in the Display Menu from the toolbar. There is an entry to create a new Display Window and entry for each open Display Window.

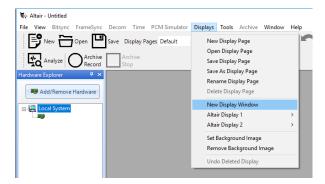


Figure 95 - Display Window options in the Display Menu

The entry for each open Display Window has an arrow next to it. Selecting the arrow expands the menu to display a list of the Display Pages. The selected Display Page is

denoted with a check mark. Selecting a Display Page from this list changes the Display Page that is displayed in that Display Window. This feature allows the user sitting in front of the main display to change what is seen on other displays. This feature is useful for when the secondary display is a projector or large high-definition TV in a control room.

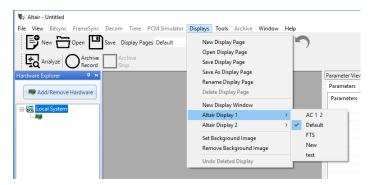


Figure 96 – Selecting the Display Page for a Display Window

The option "New Display Window" in the Display menu, creates a new Display Window. The Display Window can be maximized, minimized, or dragged to another display. The title bar of the Display Window displays the number of the display and the current ALTAIR Configuration file. The Display Page combo box selects which display page is used. The Refresh button reloads the Display Page. This feature is used when changes are made in the ALTAIR main window or in other Display Windows. The Save button saves any changes to the Display Page.

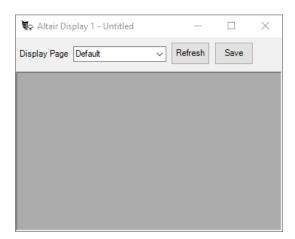


Figure 97 – Display Window

5.3 Introducing Data Displays and Properties

ALTAIR uses Data Displays to visualize and accurately represent data. Most Data Displays are resizable and use a snap-to-grid movement that allows users to easily customize and organize the display area. The displays are specifically designed for ease

of use and consistency. Data Displays fall into two categories: displays with title bars and displays without title bars.

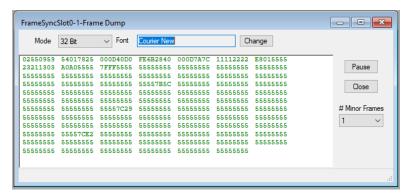


Figure 98 – Data Display with Title Bar

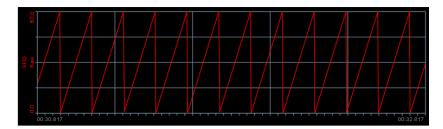


Figure 99 – Data Display without Title Bar

The title bar functions with the same purpose as in all Windows operating system applications. It is the handle to move a window and contains the Minimize / Maximize button as well as the Close button. Data Displays with title bars are moved by positioning the cursor over the title bar, pressing the left mouse button, and moving the mouse to move the display. Release the left mouse button when the display is in the correct location. The Data Display with title bars are resized by hovering the mouse over any of the four size or four corners of the window. Data Displays with title bars cannot be multiselected, therefore only one can be copied and pasted at a time.

Data Displays without title bars do not have buttons for Minimize / Maximize or Close. Resizing is completed by hovering the mouse over any of the four size or four corners of the window. Data Displays without title bars are moved by left clicking on the display when the mouse turns into the crosshair icon. These displays are free moving, but they will snap and auto align to close by displays. The snap feature allows displays to be arranged into neat rows and columns. The snap also works when resizing a display that is adjacent to a display that is a different size. Data Displays without title bars can be multiselected. Data Displays are multi-selected by either holding the Control key while selecting controls or by drawing a lasso around the controls. The lasso must start on the Display Page background and is drawn behind the controls, so until the lasso is only visible over the background. Multi-select is used to select multiple data displays for moving them as a group or for copying and pasting the group of displays. The Copy and Paste buttons are available in the Display Toolbar.

Displays are associated with different parts of the hardware. The various displays and their relationship to the hardware are listed below:

• Bit Sync Displays:

- *Input Waveform* A display for viewing data being transmitted into the Tarsus3 / Tarsus4 Bit Sync. This data is sampled directly after the front-end Analog to Digital converter.

• Frame Sync Displays:

■ *Raw Data Dump* – A display for viewing the raw data in parallel form after it has been processed by the Bit Sync and Frame Sync.

• Decom Display:

- *Tabular* A display for columnized data in scientific floating-point mode or integer mode with hexadecimal, decimal, or binary formats.
- Strip Chart A display used to synchronously display every sample of data for a parameter in a scrolling waveform format.
- Scope/FFT A display used to synchronously display every sample of data for a parameter in a non-scrolling type display with the ability to run a Fast Fourier Transform on the data.
- \blacksquare **Bar Graph** A display used to represent data using vertical bars.
- Lamp A circular display that changes color based on defined criteria.
 Used like an indicator lamp: green for good and red for bad.
- Meter A display for representing data as digits in scientific floating-point mode or integer mode with hexadecimal, decimal, or binary formats. This display is like a digital multi-meter or LCD readout. The meter is also used for a textbox.
- Dial A display for representing data as a circular instrument or gauge.
- *Digital/Discrete* A display used to represent data in a binary format or as specific states of a process.

■ 3D Modeling – A display used to represent data using a real-world 3D model.

5.3.1 Display Toolbar Buttons

In ALTAIR, there are toolbar buttons associated with each Decom data display. Depending on the display type, a toolbar can contain one or more of the buttons shown below. Below is a list of Display Buttons:

5.3.2 Using Display Properties

All data displays in the ALTAIR software contain properties. Properties are settings that determine how the display windows appear. These settings also determine how the data appears within the window: data format, data color, data precision, data scales, data limits, etc. All data displays will not have the same properties, but every data display will have properties. Displays may contain hierarchal levels of properties. For example, a Strip Chart display has properties for each parameter loaded in the display and it will also have properties for the overall strip chart window.

The properties on all displays can be accessed in two ways:

- 1. Click on a display window or a parameter within the windows while the Display Properties Tab is selected.
- 2. Click on the window or a parameter within the windows and use the toolbar for the selected display.

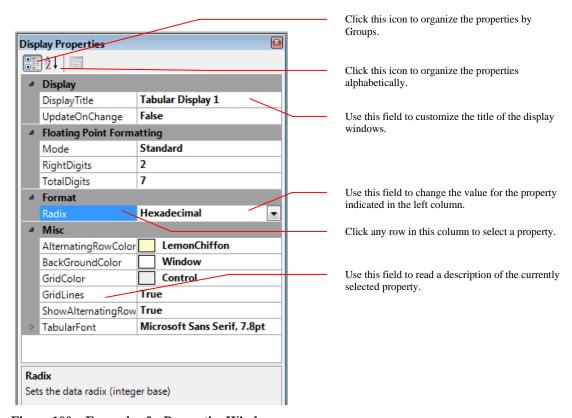


Figure 100 – Example of a Properties Window

Change the property located in the left column by clicking the options in the right column. There are three kinds of Property entry: text entry, drop down menu, and pop-up window. For example, font properties have pop-up windows to select the Font, Font Style, Font Size, and Effect.

5.4 Using the Bit Sync Displays

5.4.1 Waveform Display

The PCM input waveform display is a display tool used to verify the input PCM data. A snapshot is taken of the data and is displayed in a time domain, along with a Fast Fourier Transform (FFT). The data is sampled directly after the analog to digital converter on the Tarsus3 / Tarsus4 hardware and provides a good indication of whether the source of data is valid and connected. To access the Waveform Display:

 On the ALTAIR main screen, select a **Bit Sync** in the Hardware Explorer window and click the Waveform button on the Bit Sync toolbar or select **Bit Sync\Displays\Input Waveform** from the main menu. The Bit Sync Input Data Waveform Display window will open as shown below.

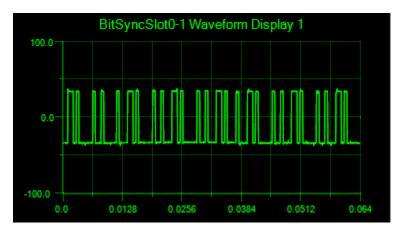
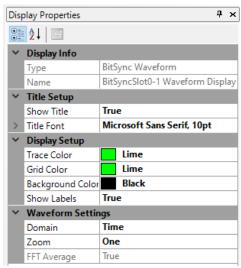



Figure 101 – Bit Sync Input Waveform Time Display

- 2. To pause the display, right click on the display and select "Pause" from the menu. To restart the display, right click on the display and select "Run" from the menu.
- 3. The Bit Sync Waveform Display is customized via properties in the Display Properties window.

4. Changing the Waveform Settings Domain to Frequency, changes the Bit Sync Waveform Display to the FFT of the data.

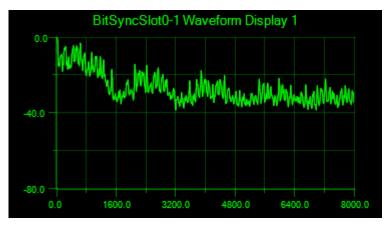


Figure 102 – Bit Sync Input Waveform FFT Display

While the Bit Sync Waveform Display is open, the frame sync data is not sent to the decom. Therefore, the Bit Sync Waveform Display cannot be used at the same time as the Frame Dump and some other displays.

5.4.2 Eye Diagram Display

The Eye Diagram Display assists in determining the accuracy of a bit sync setup. To locate and use the Eye Diagram Display:

1. On the ALTAIR main screen, select a **Bit Sync** in the Hardware Explorer window and select the **Bit Sync\Displays\Eye Diagram** menu option from the main menu, or click the Eye Diagram button on the Bit Sync toolbar. The Bit Sync Eye Diagram window will be displayed. (See Figure 103 – Eye Diagram below.)

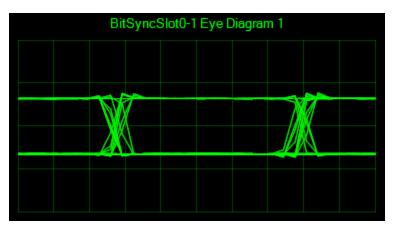
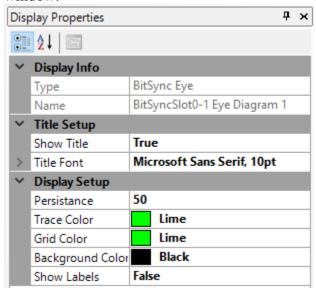



Figure 103 - Eye Diagram

- 2. To pause the display, right click on the display and select "Pause" from the menu. To restart the display, right click on the display and select "Run" from the menu.
- 3. The Eye Diagram Display is customized via properties in the Display Properties window.

5.5 Using the Frame Sync Displays

5.5.1 Using the Frame Dump Data Display

The raw Frame Dump Data Display is helpful during frame sync setup and data analysis. To locate and use the Frame Dump Data Display:

1. On the ALTAIR main screen, select a Frame Sync in the Hardware Explorer window and either select the menu option *Frame Sync\Displays\Frame Dump*, or click the Frame Dump button on the Frame Sync Toolbar. The Frame Sync Frame Dump screen will be displayed. (See Figure 104 – Frame Dump below.)

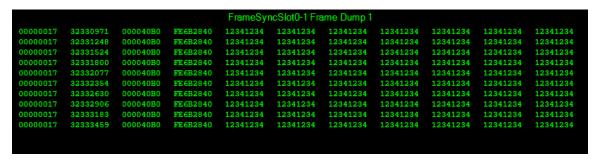
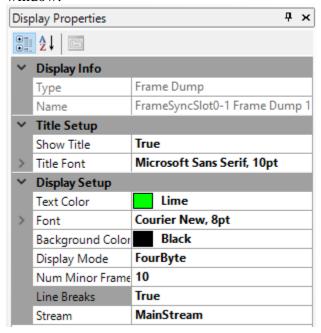



Figure 104 - Frame Dump

- 2. If the data does not fit inside the bounds of the display, the Frame Dump Display will add vertical and/or horizontal scroll bars.
- 3. To pause the display, right click on the display and select "Pause" from the menu. To restart the display, right click on the display and select "Run" from the menu.
- 4. The Frame Dump Display is customized via properties in the Display Properties window.

5.5.2 Using the Frame Sync Statistics Display

The Frame Sync Lock Statistics analyzes the quality of the signal using the Frame Sync Pattern and SFID Count as statistics for good signal. The display shows the number and percentage of "good" minor frames and "good" SFID. A "good" minor frame is when the Ulyssix PCM card is in frame lock. A "good" SFID Count is when the Ulyssix PCM card is in sub-frame lock, and the minor frame counter is one greater than the previous counter. Each statistic is calculated as raw counts and a percentage of total minor frames received.

The Frame Sync Statistics starts analyzing minor frames when ALTAIR loads a configuration file. Because the Frame Sync Statistics start before the Ulyssix PCM card is stable, there are often errors when you first launch the display. Right mouse clicking on the display launches a pop-up menu with options to clear the counters and pause/run the display.

FrameSyncSlot0-1 Statistics 1		
Name	Count	Percent
Good Minor Frame	67,587	100.00%
Bad Minor Frame	0	0.00%
Good SFID	67,587	100.00%
Bad SFID	0	0.00%
Missed Blocks	0	
Elapsed Time	00:00:15.0	
Bad MF / Sec	0.00	
Bad SFID / Sec	0.00	

Figure 105 – Frame Sync Lock Statistics

5.6 Using the Decom Displays

The ALTAIR software Decom section provides the real power behind the ALTAIR product. This is where the PCM data can be viewed in data displays, analyzed, saved, and replayed. This section will describe how to use the data displays to get the most benefit from the ALTAIR software.

5.6.1 Using Decom Data Displays

The process of using data displays is consistent across all displays. To use a data display, follow the step-by-step procedure below:

- 1. On the ALTAIR main screen, select a Decom in the Hardware Explorer window and select a display by using one of the following methods:
 - a. Select the main menu item *Decom\Displays* and choose one of the display types.
 - b. Click the Displays button on the Decom Toolbar to select a display type.
 - c. Highlight a parameter in the docking parameter window, click the right mouse button, select either **View Param in New** or **Add Param to Existing**, and then select a display.
- 2. Once a display is open, it can be re-sized, moved, and have its properties changed. To re-size, move, or adjust Decom Data Display properties:
 - a. Sizing:
 - 1. To change the width, point to either the left or right window border. When the pointer changes into a horizontal double-headed arrow ↔, drag the border to the right or left.
 - 2. To change the height, point to the top or bottom window border. When the pointer changes into a vertical double-headed arrow ‡, drag the border up or down.
 - 3. To change the height and width at the same time, point to any of the four corners. When the pointer changes into a diagonal double-headed arrow, drag the border in any direction.
 - 4. Sizing a display will snap to the edges and corners of nearby displays. This helps create neat columns and rows of displays.
 - b. Moving To move a window, grab it by clicking the left mouse button while the cursor is over the window border region and then drag the window to a new location. The Data Display will snap to the edges and corners of nearby displays. This helps create neat columns and rows of displays.
 - c. Properties Click on the Display Properties tab located in the Hardware Explorer or click on the Properties button on the Display Property Toolbar. To enable the toolbar, click View and check Display Properties.

5.6.1.1 Loading Parameters into Data Displays

The PCM data is viewed by loading predefined parameters into the data displays. This section explains how to load parameters into the display pages. Two methods are provided for loading parameters into data displays:

1. Drag and Drop – Using the drag and drop method is the easiest and quickest way of loading parameters. Simply select a parameter in the docking parameter view window (see section 4.1.3 Parameter), click and hold the mouse button, drag the parameter to a data display window and drop by releasing the mouse. The following cursors are used to indicate valid and non-valid drop zones:

Indicates the area is a valid drop zone.

Indicates the area is not a valid drop zone.

2. Parameter Window Menus – Select a parameter in the docking parameter view window (see section 4.1.3 Parameter), right mouse click to bring up a menu and select either **View Param in New** or **Add Param to Existing** and then select a display.

5.6.1.2 Deleting a Data Display

To delete a data display, click the left mouse button on the display and press delete on keyboard or the Delete Selected Display icon on the Display Toolbar. If deleting a multiple parameter display, you may be prompted by the Confirm Multiple Parameter Removal window if you want to continue with the delete. Click **Yes** to delete or **No** to keep the display.

5.6.1.3 Deleting Parameters from Data Displays

To delete a parameter from a data display, select a parameter with the mouse and press the delete key, or right click on a parameter and choose Delete from the menu. You may be prompted by the Confirm Parameter Removal window if you want to continue with the delete. Click **Yes** to delete, or **No** to keep the parameter.

5.6.1.4 Using the Bar Graph Display

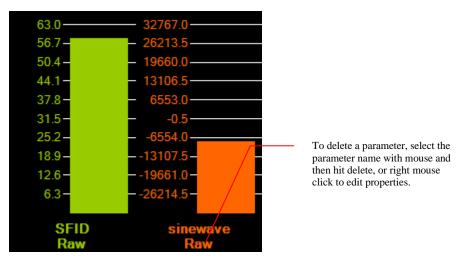


Figure 106 – Bar Graph Data Display

To create a Bar Graph, right click on a parameter from the Parameter View, select **View Param in New**, and select **Bar Graphs**. To add additional charts to an existing Bar Graph, drag the parameter from the Parameter View and drop it on the Bar Graph display.

All settings for the Bar Graph display are accessed via the Properties Window. (See 5.3.2 Using Display Properties.) The Display Properties for a Bar Graph include groups for Display Appearance, Selected Graph Setup, Selected Graph Appearance, and Selected Graph Limits. As implied by the name, the last three groups only apply to the selected chart in a Bar Graph display with multiple bars. To select a chart, left click on the parameter name in the display.

To delete a parameter, select the chart with via a left click and either hit the delete key or right click and select **Delete Chart**. To delete the entire display, select the display and click the Delete Selected Display icon in the Displays Toolbar.

5.6.1.5 Using the Dial Display

The Dial Display uses the parameters range to set the limits on a dial plot. The needle points to the current parameter value. Optionally, the Dial Display prints the current value on the dial face.

The Dial Displays appearance is configured via the Display Properties window. The Display Appearance section includes Border Color, Face Color, Needle Color, Text Color, and Range Font are defined in the Display Setup section. The Scale section defines the Limits, Range, and Divisions. The Limits and Range are inherited from the Decom Parameter. The Dial Format section defines if the Dial Display is a full circle and the angular location of the Minimum Value. All angles are defined with 0 degrees as the top, 90 degrees as the right, 180 degrees as the bottom, and 270 degrees as the left.

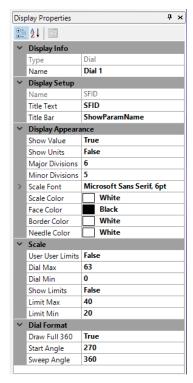


Figure 107 - Dial Display Properties Window

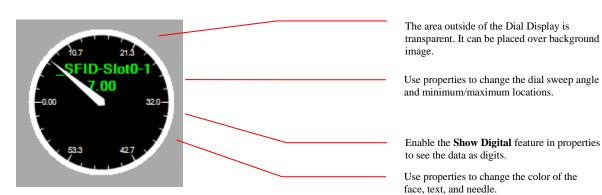


Figure 108 – Dial Data Display



Figure 109 – Dial Data Display Showing Limits

Below is an example of two Dial Displays that are 180 degrees each. This is accomplished by setting the DrawFull360 property to false and setting the Sweep Angle to 180 degrees. Then setting the Minimum Angle to determine the desired quadrant. The top Dial Display has Minimum Angle set to 270 degrees. The bottom Dial Display as the Minimum Angle set to 90 degrees.

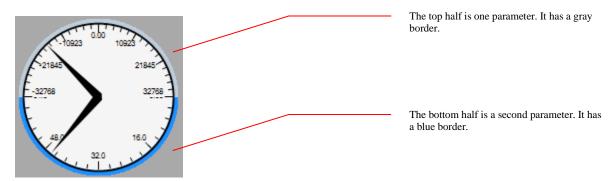


Figure 110 - Two 180 Degree Dial Displays

5.6.1.6 Using the Discrete Display

The Discrete Display is different from the other data displays in ALTAIR. This display represents individual bits in the Decom Parameter. When a new parameter is being set up for a discrete display, default settings will be loaded until further configuration is completed. To access the Discrete Setup Form, right click on the Discrete Display and select **Setup** from the menu.

Anytime a parameter is loaded into a Discrete Display and its size in bits is changed, the Discrete Display Setup must be performed again.

Figure 111 – Discrete Individual Bits

Figure 112 – Discrete Display Combined Bits

1. To change display modes or set text and icons, click the right mouse button on the display and select Setup or click the Setup button on the Property Toolbar.

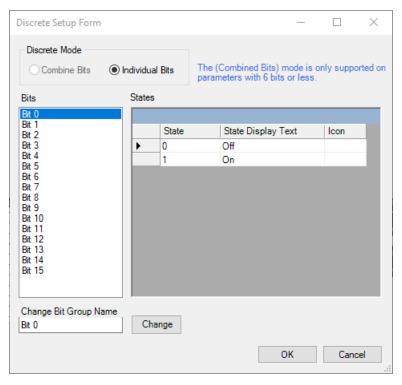


Figure 113 – Discrete Setup

- 2. Select **Combine Bits** or **Individual Bits** for the discrete mode.
- 3. Next, directly enter text in the States list.
- 4. Select icons for each stat by selecting the icon field, clicking the browse button, and then selecting an icon from the icon list. (See Figure 114 Icon List).
- 5. When complete, press Ok to update the discrete display.

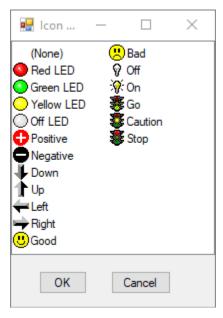


Figure 114 – Icon List

5.6.1.7 Using the Image Display

The Image Display is a frame that holds a BMP, JPG, GIF, or PNG image file. Select the image by right clicking on the display and selecting Select Image from the pop-up menu. The image display has many uses, including displaying a logo or even a screen shot of the correct values in ALTAIR.

Figure 115 – Image Display

5.6.1.8 Using the Lamp Display

The Lamp Display is an indicator that changes color based on defined conditions. The first step is to add a Lamp display and define the parameter for the lamp. Next, right click on the Lamp display and select "Setup" to launch the Lamp Setup form. For a new Lamp display the Lamp Setup form will not have any rows.



Figure 116 - Lamp Setup Form

Click the Add Row to add a new row. Up to eight rows are allowed. Each row has a check box to select the row, the parameter name, the operation, the value for the operation, and the color if the operation is true. The last row in the Lamp Setup form will also have the color if the operation is false.

The possible operators are: Equal To Not Equal To Less Than Less Than or Equal To Greater Than
Greater Than or Equal To

The example below is for the Frame Sync Lock parameter "_FLOCK." The Frame Sync Lock parameter has three values: 0 = Search, 1 = Check, and 2 = Lock. The top row sets if _FLOCK is equal to 2 then the Lamp will be green. The next row sets that if _FLOCK is equal to 1 then the Lamp will be orange, else the Lamp will be red.

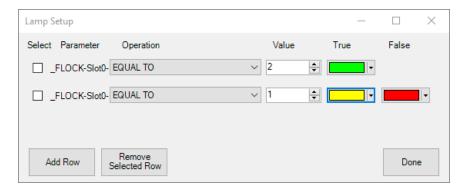


Figure 117 – Lamp Setup Example

By default, the Lamp has a black background and displays the parameter name at the top of the display and the current value at the bottom of the display. When the Display Property **Title Bar** is set to None and **Show Value** is false, the name and value are not displayed, and the background of the lamp becomes transparent.

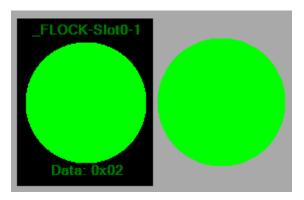


Figure 118 - Lamp Displays with and without Parameter Name and Value

5.6.1.9 Using the Line Display

The Line Display is a simple line drawn on ALTIAR's main screen. The typical use of the Line Display is to separate portions of the main screen.

The Line Display's appearance is modified in its Display Properties.

1. The Line Display has two directions: Horizontal or Vertical.

- 2. The Line Display has two types of lines: Single or Double.
- 3. The user can set the line color.
- 4. The user can set the line thickness.

5.6.1.10 Using the Log Display

The Log Display tracks the values and time stamps of a single parameter in a two-column table. The first column is the time stamp in IRIG format. The second column is the value of the parameter. New data is added to the bottom of the table. The Log Display holds up to 1024 rows, but it only displays the newest values that fit in the table.

Time	_SFID-Slot0-1
137:16:42:54.031589	39
137:16:42:54.031845	40
137:16:42:54.032101	41
137:16:42:54.032357	42

Figure 119 – Log Display

The Log Display Properties are edited by selecting the Log Display and then modifying the desired properties in the Properties Window. The **UpdateOnChange** property changes how the Log Display adds data. When set to true, the Log Display only adds a new row to the table when the value of the parameter changes. **UpdateOnChange** is useful for tracking changes in the Frame Sync Lock state (FLOCK).

Figure 120 - Log Display Properties

Right clicking on the Log Data Display brings up a menu with two options: Clear and Copy. Clear erases all data stored in the Log Display and begins collecting data again. Copy creates a copy of the data in clipboard in CSV format.

5.6.1.11 Using the Lookup Display

The Lookup display decodes a parameter into a known message. This display is useful for decoding Frame Format Indicators or translating a status word in different string messages based on value of the parameter. The control has a lookup table of numeric values, strings, and colors. And if the parameter value matches the value in the lookup table, then the Lookup Display shows the string and colors from that entry.

The format of the numerical value is selected at bottom of the display via the Value Radix drop down. It has options for Hexadecimal and Decimal.

Changing the Text Color and Background color is useful for drawing attention to a Lookup Display. For example, changing the background color to red indicates a serious warning.

Lookup Display can be added to the ALTAIR Display by two methods. First, by selecting a Decom in the Hardware Explorer, selecting Decom from the toolbar menu, selecting

Displays from the drop-down menu, and then selecting Lookup. Or second, by right clicking on a parameter in the Parameter View window, selecting Add Parameter in new, and then selecting Lookup.

To set up the lookup table, right click on the Lookup Display and select Setup from the menu. The Lookup Setup window can have multiple rows. To add more rows, click the Add Row button. To remove a row, click the checkbox for the row or rows to delete and then click the Remove Selected Row button.

Each row has an Operation, Value in hexadecimal, a string for if the operation on the value is true, an optional Text Color, and an Optional Background Color. Please note that only the last row has an entry for False. In the example below, the lookup table checks if the value of Parameter161 is 0x0. If this is true, the Lookup display will show the string Good. If the value of Param161 is less than 0x0, it will display string Negative. If neither of those conditions are true, then the Lookup Display will show the string Positive.

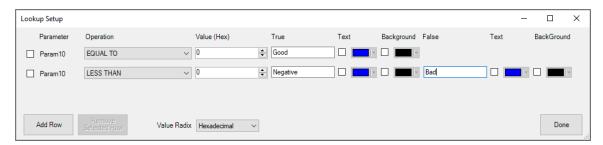
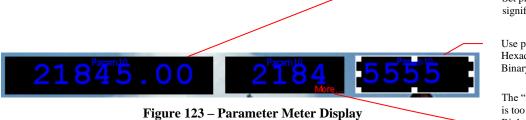


Figure 121 – Lookup Setup Window

Below is an example of a Lookup Display on the left and the Meter on the right for the same parameter, Param161. The value of Param161 is 0x0. The Lookup Display is decoding this value to the string "Good."

Figure 122 - Lookup Display and a Meter Display


5.6.1.12 Using the Meter Display

The Meter is a versatile data display. It can show either the numeric value of a Decom Parameter or an alphanumeric string. The Meter numeric display can format the number into Binary, Octal, Hexadecimal, or Decimal.

Meters configured for Decimal can format the number Standard, Fixed Decimal, or Scientific Notation. Standard is integer notation with zero decimal places. Fixed Decimal allows the user to set the number of decimal places using the Right Decimal property. Scientific Notation also uses Right Decimal to determine the number of decimal places.

Meters configured for Binary, Octal, or Hexadecimal display the Decom Parameter in the selected format. The number of digits is determined by the number of bits for the Decom Parameter.

- 1. The Meter Display has three different display types: Parameters, Embedded Time, and Text.
- 2. All settings on the meter display are done through the properties window.
- 3. To display a **Parameter**, select "Parameter" in the Meter Type menu on the Display Properties Window.

Set properties to configure significant digits.

Use properties to display data in Hexadecimal, Octal, Decimal, or Binary.

The "More" indicates the display is too small to display all digits. Right-mouse click and select "Auto Size" to set automatically or manually re-size the window by dragging a corner or side of the display.

4. To display **Embedded Time**, select "Embedded time" in the Meter Type menu in the Display Properties Window. The time format is set when creating a parameter in the Decom setup.

Figure 124 – Embedded Time Meter Display

5. To display **Text**, select "Text" in the Meter Type menu in the Display Properties Window. Enter custom text in the Meter Text field. Change text color in the Meter Text Color field.

Figure 125 – Text Meter Display

A Meter can display multiple Decom Parameters. When adding a Decom Parameter to an existing Meter, the new parameter is either added below the existing parameter or to the right of the existing parameter. The property Meter Direction determines the direction. The two options for Meter Direction are Vertical or Horizontal.

To add an additional Decom Parameter, right click on the meter and select "Add End." Add End will add the next Decom Parameter at the end of the Meter Group. The Swap to Horizontal option will rotate a vertical column of Meter Parameters to a horizontal row. If the Meter Group is currently a horizontal row, the pop-up menu will have an option for Swap to Vertical instead. To replace a Decom Parameter in the Meter, drag and drop a Decom Parameter from the Parameter Menu on top of the desired location.

Figure 126 - Add Additional Decom Parameter to Meter

A Meter that already has multiple Decom Parameters has additional options in the right click menu. The Add After option adds the next Decom Parameter in the location after the Meter Parameter where the menu pops up. Delete Selected removes the Meter Parameter where the menu pops up and moves any Meter Parameters below it up or to the left (depending on the orientation).

Figure 127 - Meter Pop Up Menu

5.6.1.13 Using the Rectangle

The Rectangle Display is a simple line drawn on ALTIAR's main screen. The typical use of the Rectangle Display is group other displays. When you move a Rectangle Display, the displays inside of the Rectangle move together. This is a convenient way to group displays.

The Rectangle's Display Properties configure its appearance.

- 1. Each Rectangle has user defined **Title** as well as the **Title Font** and **Title Color**.
- 2. **Show Title** shows or hides the Rectangle Display's title at the top.
- 3. There are three **Rectangle Types**: Border, Solid and Border, and Solid.
- 4. The **Radius** of the corners is configurable.
- 5. The user can set the **Border Color**, **Border Width**, and **Background Color**.

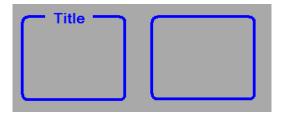


Figure 128 - Rectangle Display with and without Title

Figure 129 – Rectangle Display Three Rectangle Types

5.6.1.14 Using the Scope/FFT Display

The Scope/FFT display works like a digital oscilloscope. Continuous data is captured and once enough data is acquired to meet the horizontal control setting, the screen is refreshed. Each Scope/FFT Data Display can show up to four charts with one parameter per chart. To change the number of charts, right click on the Scope/FFT and select either Add Chart or Delete Chart from the menu. After adding a chart, it is empty. To add a Decom Parameter, drag the Decom Parameter from the Parameter View and drop it in the empty Scope/FFT Chart.

The display has two modes: Scope and FFT. In Scope mode, the display has an optional trigger to synchronize the horizontal data position. The Display Toolbar X-axis and Y-axis zoom buttons work in Scope Mode. In FFT mode, the display has settings for the FFT Window and the number of points in the FFT calculation. The Display Toolbar Y-axis zoom button works in FFT Mode. The FFT display does not have zoom on the X-axis. Changing the X-axis is accomplished by changing the number of points in the FFT calculation.

The XY plots in the Scope/FFT display are configured in the Display Properties menu. There are two different Display Property pages for each display.

The first is the Scope Param Y-Axis. It is accessed by a left mouse click on the Y-Axis of the Scope/FFT display. The Display Properties window includes groups for the Scale, Trigger, and FFT settings.

The second is the Scope Plot Area. It is accessed by a left mouse click on the data plot of the Scope/FFT display. The Display Properties window includes groups for Display Setup and Display Appearance.

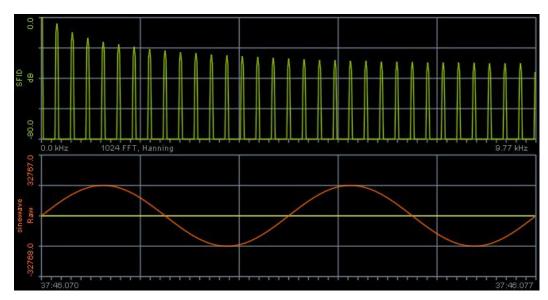


Figure 130 – Scope/FFT Data Display

5.6.1.15 Using the Shades of Gray Display

The Shades of Gray Display is a three-dimensional FFT plot. The X-axis is time. The Y-axis is frequency. The Z-axis is the signal's intensity in dB. The plot is configured as a XY plot with the Z-axis represented by the shade of the display where lighter colors are higher dB and dark colors are lower dB. The Z-axis scale is adjusted in the Display Properties with the **Z** Axis Ceiling and **Z** Axis Floor properties.

The Shades of Gray Display's FFT calculation uses 512 points, no overlap, and the Blackmon window. The FFT is calculated on every new set of 512 points. The Shades of Gray Display shows the most recent 512 FFT calculations. Each FFT calculation is one column of the plot. The oldest FFT data is on the left. The newest FFT data is on the right.

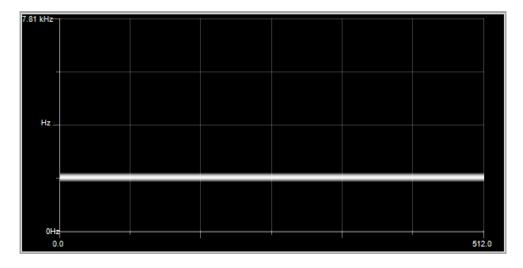


Figure 131 – Shades of Gray Display: Sinewave Eight Points per Period

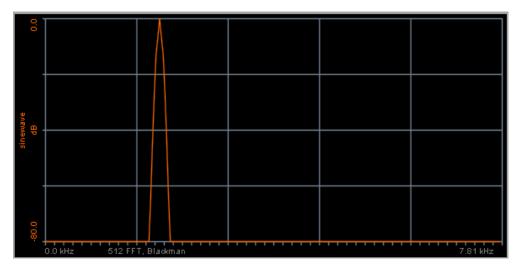


Figure 132 – FFT Display: Sinewave Eight Points per Period

The example Shades of Gray Display above is a Sinewave with eight points per period. The single intense line because the input signal is a pure tone with spread (because of the low sample rate). The same signal is presented in a FFT Display to demonstrate the relationship between the FFT's dB value and the intensity of the Shades of Gray Z-axis.

The Shades of Gray Display includes cursors for measurement on the display. When the cursor is above the plot area, red cross hairs appear and the X, Y, Z position of the cursor appears at the bottom of the display. Clicking the left mouse fixes the first cursor to the location and mouse controls a second cursor with its position at the bottom of the display. A second left mouse click locks the second cursor. The delta between the first cursor and second cursor, as well as the slope of the line, appears at the bottom of the display. To clear the cursors, right click on the plot and select **Clear Cursors** from the menu.

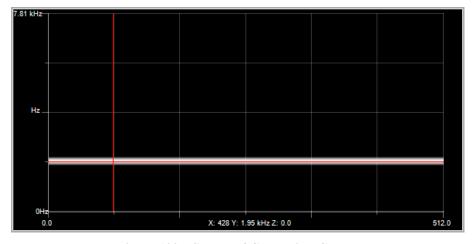


Figure 133 – Shades of Gray: First Cursor

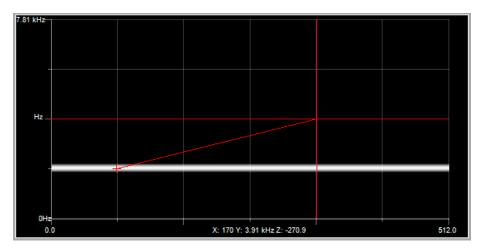


Figure 134 - Shades of Gray: Second Cursor

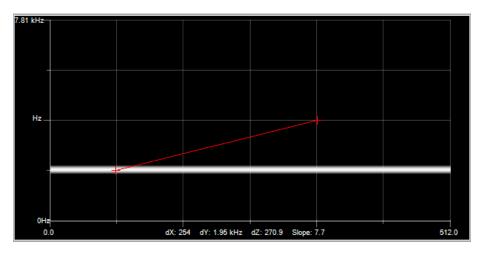


Figure 135 - Shades of Gray: Delta Cursor

5.6.1.16 Using the Strip Chart Data Display

Strip Chart Data Display plots the Decom Parameter value versus time. A Strip Chart Display contains one or more Strip Chart Plots. A Strip Chart Plot is one XY plot with an independent time X-axis. Each Strip Chart Plot can contain one or more Decom Parameters.

The Strip Chart Data Displays and Strip Chart Plots are configured via the Display Properties menu. There are three different Properties menus: Strip Chart Properties, Strip Chart Param Y-axis Properties, and Strip Chart Area Properties. The different Display Property menus are selected by left clicking on parts of the Strip Chart Data Display.

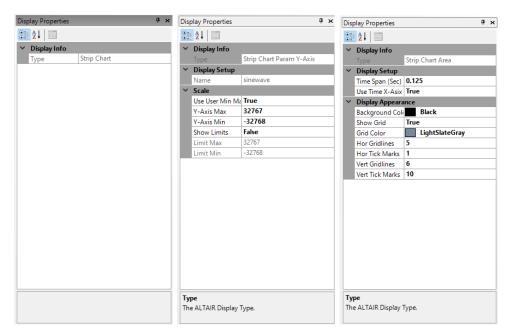


Figure 136 – Three Display Property Windows for the Strip Chart Display

To display the Strip Chart Properties menu left click on the vertical Decom Parameter name on the X-axis of a plot. This Display Property menu displays the Display Info Type.

To display the Strip Chart Param Y-axis Properties left click a parameter name in Y-axis pf any of the Strip Chart Plots. The Strip Chart Param Y-axis Properties menu has selections for changing the Y-Axis scale, Y-axis Limits, and if the Limits are displayed on the plot.

To display the Strip Chart Area Properties left click inside the plot area of a plot. The Strip Chart Area Properties has selections for the X-axis, background color, and grid configuration.

There is a right mouse click menu associated with each Decom Parameter in the strip chart. To access the right mouse, click menu, select a Decom Parameter by clicking the vertical text Decom Parameter name on the left side of the Strip Chart and then click the right mouse button. The menu includes Delete Parameter, Auto Scale Y Axis, and Set Y Axis to Param Range.

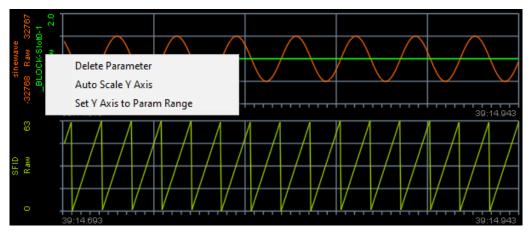
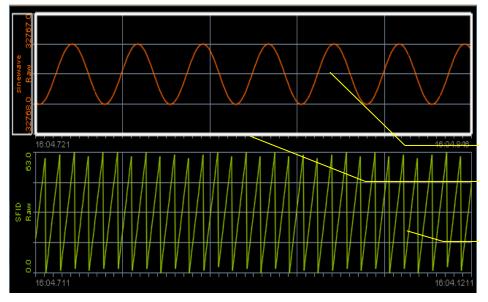



Figure 137 – Strip Chart Decom Parameter Right Mouse Click Menu

Delete Parameter removes the selected Decom Parameter from the chart. Auto Scale Y Axis sets the minimum and maximum for the Y-axis to the largest values currently in the chart. Set Y Axis to Param Range sets the Y-axis to the default values of min and max.

Up to four parameters can be added to a strip chart display.

Left click on a display and a white outline appears so users can then delete or set display properties.

To add a new strip chart, drag and drop a parameter into the display area.

Figure 138 – Strip Chart Display

A Strip Chart Data Display can display multiple Strip Chart Plots. In the picture above, the Decom Parameters Sinewave and SFID are each in a Strip Chart Plot and the two Strip Chart Plots are in one Strip Chart Data Display. To add a new Stirp Chart Plot to an existing Strip Chart Display, drag and drop a Decom Parameter form the Parameter Menu to the X-axis of the bottom Stirp Chart Plot. A new Strip Chart Plot is added to the bottom of the Strip Chart Display with the desired Decom Parameter. Please note: a new Strip Chart Plot can only be added at the bottom; they cannot be inserted between existing Strip Chart Plots.

A Strip Chart Plot can display up to four Decom Parameters. To add a Decom Parameter to an existing Strip Chart Plot, drag and drop the Decom Parameter from the Parameter menu to the plot area of the desired Strip Chart Plot. In the image below, Param13 was added to a Strip Chart Plot that already contained Sinewave. These two Decom Parameters are plotted using the same X-axis. This is a useful display for time correlating data.

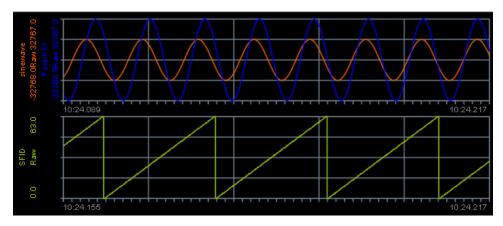


Figure 139 – Strip Chart Plot with Two Parameters

- 1. All settings on the strip chart display are done through the properties window. (See 5.3.2 Using Display Properties.)
- 2. To save display to a bitmap, press the Save button on the Strip Chart Toolbar.
- 3. Zoom in or out by using the Zoom X or Zoom Y buttons on the Strip Chart Toolbar. Select x or y in the toolbar, move the cursor over a display, and then right or left mouse click to adjust.
- 4. All the Strip Chart Plots in one Strip Chart Data Display can be paused by pressing the hand icon in the Display Toolbar.

To pause the Strip Chart, press the hand icon in the Display Toolbar. While the Strip Chart is paused, a vertical cursor appears under the mouse and the X and Y values of the cursor are displayed below the Strip Chart. In the image below, the cursor is red, the Y value is 32, and the X value is 1 minute, 5 seconds, 508 mS, and 249 uS.

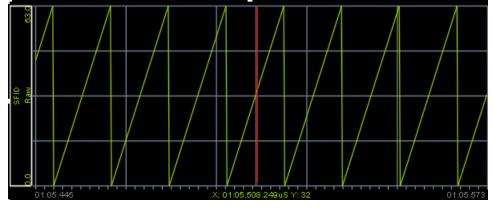


Figure 140 - Strip Chart Cursor

Clicking the left mouse button places a yellow cursor fixed at the click location and creates a second cursor. The display at the bottom of the Strip Chart shows the values for the second cursor. Clicking the left mouse button locks the second cursor and sets the display at the bottom of the Strip Chart to the delta between the two cursors.

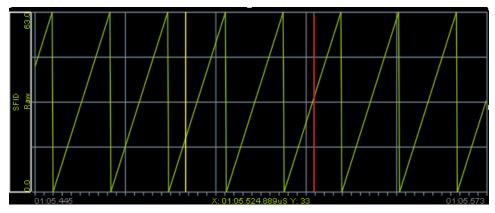


Figure 141 – Strip Chart Second Cursor

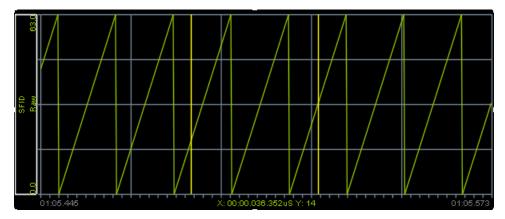
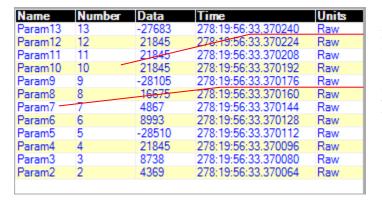


Figure 142 – Strip Chart Delta Cursor


5.6.1.17 Using the Tabular Display

The Tabular Display organizes multiple Decom Parameters and their value into one display. It is customizable to set which columns are displayed. The Data Column can format the number into Binary, Octal, Hexadecimal, or Decimal.

When the Data Column is configured for Decimal, the Data Column can format the number in Standard, Fixed Decimal, or Scientific Notation. Standard is integer notation with zero decimal places. Fixed Decimal allows the user to set the number of decimal places using the Right Decimal property. Scientific Notation also uses Right Decimal to determine the number of decimal places.

Data Columns configured for Binary, Octal, or Hexadecimal display the Decom Parameter in the selected format. The number of digits is determined by the number of bits for the Decom Parameter.

The Tabular Display Property **Update On Change** allows the display to only be updated when a value changes. This feature is useful for tracking Status Parameters like Frame Lock or Sub-Frame Lock.

Drop parameter anywhere in the display to add a new parameter to the list.

Select a row with a left mouse click. Then click the right mouse button to view a menu or press the delete key to delete a parameter.

Figure 143 – Tabular Data Display

To add, remove, or rearrange parameter Columns and Rows in a Tabular Display:

1. Columns - Right mouse click a column or press the Columns button on the Tabular Property Toolbar. Columns can be added and removed by selecting a column name and moving it between the Available Columns and Chosen Columns window. A Column order can be changed by selecting a column name in the Chosen Columns window and using the **Move Up** and **Move Down** buttons.

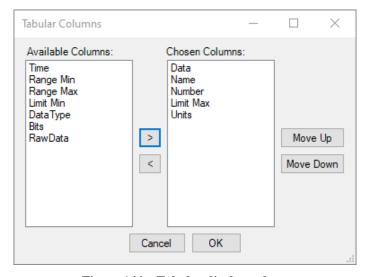


Figure 144 – Tabular display columns

2. Rows – Parameter rows can be re-arranged on the tabular display by selecting a row, clicking the right mouse button, and selecting Move Up or Down. The Rows can also

be moved by using the hot keys: Alt + Down Arrow and Alt + Up Arrow. There are also Parameter Up and Parameter Down buttons on the Tabular Property Toolbar.

5.6.1.18 Using the Textbox Display

Textbox displays user specified text to label items in the ALTAIR Display Page. Textboxes can be added to the ALTAIR Display by two methods. First, by selecting a Decom in the Hardware Explorer, selecting Decom from the toolbar menu, selecting Displays from the drop-down menu, and then selecting Text Box. Or second, by right clicking on a parameter in the Parameter View window, selecting Add Parameter in new, and then selecting Text Box.

Figure 145 – Textbox Display

The text in the Textbox Display is changed via three methods. First, double left mouse click on the Textbox Display to launch the Text Entry window. Second, right mouse click on the Textbox Display and select "Edit Text" from the menu to launch the Text Entry window. Third, the Display Text entry in the Display Properties.

The Textbox properties are edited by selecting the Textbox and then modifying the desired properties in the Properties Window. These include text color, background color, font, and text alignment.

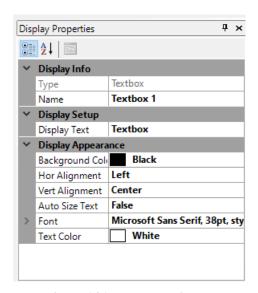


Figure 146 – Textbox Display

5.6.1.19 Using the XY Chart Display

The XY Chart Display plots two parameters against each other. A typical use case would be plotting longitude and latitude.

To add a XY Chart, click on the Displays drop-down menu in the Displays Toolbar and select XY Chart. The display appears with no parameters associated with it. In the Parameter View, locate the parameter for the X-axis and drag it to the X-axis of the XY Chart. Repeat the same process for the parameter for the Y-axis.

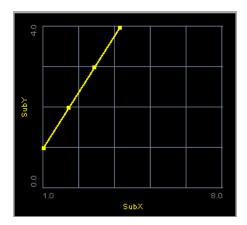


Figure 147 – XY Chart Display using LineMarker

The XY Chart's Display Properties configure its appearance:

- 1. The **Time Span** sets the amount of data used in the XY Chart. Data older than the Time Span is not plotted.
- 2. The user can customize the **Background Color**, **Grid Color**, and **Plot Color**.
- 3. There are three Plot Types: Line, Marker, or LineMarker.
- 4. The number of Horizontal Grid Lines and Vertical Grid Lines are customizable.
- 5. The X-axis minimum and maximum and the Y-axis minimum and maximum are customizable, including the option to Auto Zoom each axis.

5.6.1.20 Using the 3D Model Display

The 3D Model Display in ALTAIR simulates real world objects. Several models are provided with the ALTAIR software and new models can be added by copying the model files to the specified directory. The only type of 3D models supported by the ALTAIR software is the Microsoft X File format. Third-party tools exist to convert models of other types into the X format.

To adjust 3D model properties, follow the procedure below:

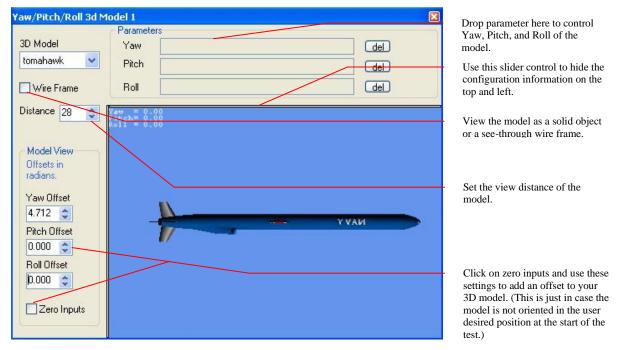


Figure 148 – 3D Model Data Display

- 1. Select a 3D Model to display.
- 2. If a solid model is desired, un-check the Wire Frame check box.
- 3. Set the Distance for the view of the model. (This setting does not have any real-world units so only adjust it as needed.)
- 4. Use Zero Inputs to verify the zero position is correct. If not, use the Yaw Offset, Pitch Offset, and Roll Offset to adjust the model. Clear the zero inputs option when complete with offset.
- 5. Drag and Drop parameters in the Yaw, Pitch, or Roll fields for the model to become animated.

5.6.2 Using Time Displays

5.6.2.1 Time Display

 On the ALTAIR main screen, select Time in the Hardware Explorer or from the Main Menu select *Time\Displays\Digital Decom Time Display* or *IRIG Time Display*. Both Time displays can also be selected by clicking on the Time Displays button in the Time Toolbar.

Figure 149 – Time Display

2. **Digital Decom Time Display** – This selection reads the time from the header of a data packet sent from the Tarsus3 / Tarsus4 hardware. This header includes time

- for either **Computer** or the **IRIG Time Code Reader**. (See 4.8 Configuring the IRIG Time.)
- 3. **IRIG Time Code Reader Display** Use to directly output the time read from the IRIG Time Code Source input on the CH2 IN TIME IN or CH3 TIME IN BNC. This display uses the same display format as the Decom Digital Time Display shown above.

5.6.2.2 Embedded Time Display

1. To use an Embedded Time Display, a time parameter must be defined, loaded into a Meter display window, and then set the Meter Type property field to Embedded Time. Set the Meter Type property to Embedded Time. (See Figure 150 – Embedded Time Setting in Meter Type Property below.)

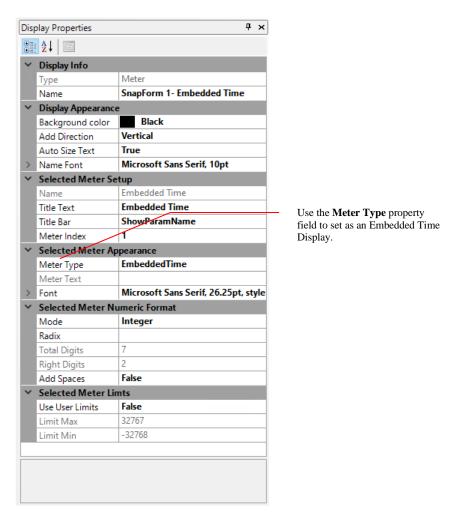


Figure 150 – Embedded Time Setting in Meter Type Property

2. Create an embedded time parameter by defining the bits in the Bit Mapping Table of the Parameter Edit/Add form. For each set of bits in the table, set the Data Type to Binary Code Decimal (BCD).

3. Set the Data Type Field to **Embedded Time**. The Embedded Time Setup button will appear as shown below. (See Figure 151 – Embedded Time Parameter below.)

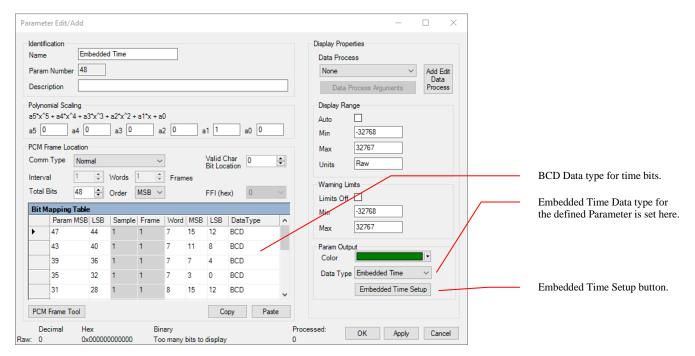


Figure 151 – Embedded Time Parameter

4. Open the embedded time word setup screen by clicking the Setup button. The embedded time words setup form will be displayed. (See Figure 152 – Embedded Time Word Setup.)

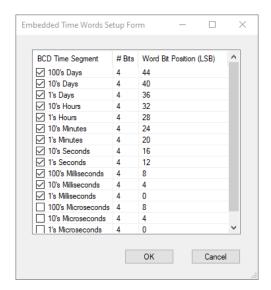


Figure 152 – Embedded Time Word Setup

- a. Enable or disable each BCD time segment. Since IRIG defined time words only include 2-bits of Days information, the Days portion of the time can be omitted by deselecting the Days BCD segment. Any segments, other than Days, not selected will result in zero for those segments. The # Bits column is a read only field and useful in determining the number of bits needed for each BCD time segment.
- b. Select the number of bits for each time segment by clicking on the drop-down selection box.
- a. Select the word bit position of the Parameter by selecting the time segment and clicking the drop-down selection box. The bit position corresponds to the location in the parameter where the least significant bit (LSB) of the time segment is located.

5.6.3 Using Display Pages

Display pages provide a method of grouping data displays, saving them, and quickly recalling them. All display properties and parameters are saved and recalled in the display pages. This feature provides a method for viewing a group of parameters and then quickly switching to another group during a test. The number of display pages is unlimited, and each page can be named for easy identification. Saving a configuration file will store the name of the last viewed display page and ALTAIR load that display page when opening the configuration file.

5.6.3.1 Saving Display Pages

After creating a display page by opening data displays, setting properties, and loading parameters, save the display page by selecting the *Displays\Save Display Page* menu option. The display page "save as" screen will be displayed. (See Figure 153 – Display Page Save As.)

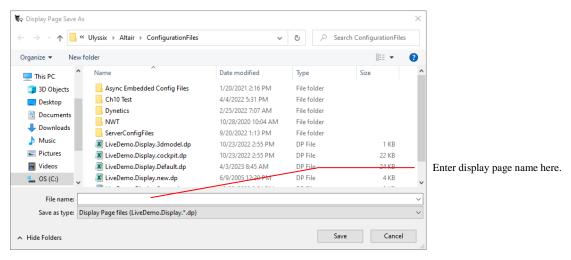


Figure 153 – Display Page Save As

- 2. Display pages are named as follows:
 - a. (Current Configuration File Name). Display. (Display Page Name). dp.
- 3. When entering a display page name, you only need to enter your (**Display Page Name**) in the file name section shown above. The remaining portion of the name will be automatically added. For example, to save a display page called **Test1**, just enter "Test1" in the File Name entry box.
- 4. To save over an existing display page, select the file and click **Save**.

5.6.3.2 Opening Display Pages

The most convenient way to open a Display Page is to select the display page from the Configuration Tool Bar – drop-down box, or by selecting the *Display\Open Display Page* from the main menu.

5.6.3.3 Working with Display Page Backgrounds

Custom background images such as a cockpit can be added to the background of a display page to give users a vision of the unit under test. Background image formats that are supported by ALTAIR includes: .BMP, .JPG, .PNG, and .GIF files.

- 1. To add a background image to a display page, select from the main menu *Display\Set Background Image*.
- 2. To remove a background image, select from the main *Display\Remove Background Image*.

5.7 Using the Simulator

The simulator has two modes of operation: Simulated Data and Archive Data. In Simulated Data mode, a repeatable PCM frame is created using fixed data values or common waveform patterns. The frame is then continually transmitted at a frequency from 1bps to 40 Mbps based on a programmable clock selection. The data is output to the simulator clock and data hardware outputs.

In Archive Data simulator mode, a previously recorded PCM stream can be played back through the simulator, thereby recreating the exact data used in a prior archive session. The Archive Data mode supports the Ulyssix TAD format, packed binary files, and padded binary files. The Ulyssix TAD format is the default binary data storage format for the ALTAIR software. The TAD format is minor frame aligned data with a 96-bit header attached before each minor frame. Each minor frame is zero padded to fill 32-bit integers. More information about the TAD format is available in the Appendix of this document. The packed binary format is raw binary data with no padding. Each minor frame is directly followed by the first bit of the next minor frame. The padded binary format is raw binary data with each minor frame zero padded to a 32-bit integer.

To use Archive Simulator, select a previously recorded archive file and press Start Transfer. During the transfer, the output frame buffer status gauge should be monitored and remain above the underflow area. An underflow condition indicates the bit rate is too high for the capability of the computer platform. When an underflow occurs, either lower the bit rate or obtain a higher performance PC.

NOTE: The archive file selected must be a Frame Sync archive file. A Decom archive file cannot be used due to data packing in the Decom archived data.

When playing an archive file containing a PCM frame with sub-commutated parameters, please note that the second minor frame (the first should always be ignored) and the last minor frame may not be consecutive frames. This causes a temporary loss of lock and data during the wrapping point of the archive data file. To correct this problem, truncate the end of the archive file or insert dummy frames to line up with the second recorded minor frame.

5.8 Using Archive

As stated in the configuration section of this manual, the ALTAIR software provides a method of storing data received from the Ulyssix hardware directly to the computer's hard disk drive and then provides the ability to replay the data back into the data displays. The ALTAIR software also provides the ability to export archived data as processed parameter data to a common file format which can be used in third party analysis and graphing software packages. The export format can be the "comma separated value" (CSV) file format which is accepted by Excel, MATLAB, and other popular software applications, or it can be a simple ASCII text file. Using the archive feature requires extensive use of the Archive Toolbar.

5.8.1 Recording

- 1. To record archive data:
 - a. Highlight a Frame Sync in the Hardware Explorer.
 - b. Go to the Archive Menu on the main menu and select Archive Setup.
 - c. In the Archive Setup window, mark the **Enabled** checkbox for TAD and/or RAD. Then select a file name and storage location. Click **OK** to accept the changes.
- 2. Press the **Record** button on the Archive Toolbar. Data will immediately begin archiving to disk. A status window will pop-up indicating a recording is in process. This window includes a timer for the recording length and which Ulyssix PCM cards are recording.
- 3. To stop recording, press the **Stop** button on the Archive Toolbar.
- 4. Starting or Stopping an Archive Recording will post an event to the Events Window. An indicator can be found in the status bar at the bottom of the ALTAIR main screen that also shows if the system is "Recording" or in "Live Mode."

Figure 154 – Archive Recording Status Window

The record button on the archive toolbar is disabled when no hardware devices are enabled for archiving.

5.8.2 Analyze Mode

Figure 28 – Archive ToolbaALTAIR's Analyze Mode uses telemetry data stored in a file to feed the Decom and Displays rather than live data from a Ulyssix PCM card. Analyze

Mode supports Tarsus Archive Data (TAD) and Receiver Archive Data (RAD files) as well as Chapter 10 file via a Licensed Option.

To use Analze Mode, begin by selecting the data file:

- 1. In the Hardware Explorer, select the Frame Sync for the playback. Please note that the Bit Sync and Frame Sync settings must match the setting used to record the data file.
- 2. In the menu bar, select Archive. In the Archive menu, select the option Analyze Playback File to launch the Analyze Playback Files window.
- 3. In the Analyze Playback window
 - a. Check the box next to Enable.
 - b. Click the button with three dots to select the desired Playback file.
 - c. Click OK.

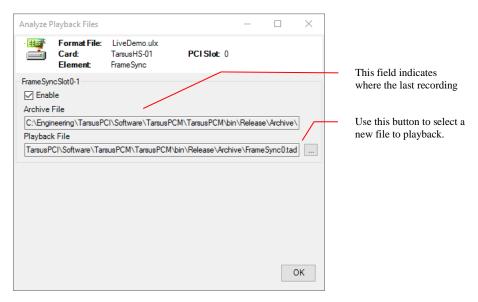


Figure 155 – Analyze Plackback Files Window

- 6. To start Analyze Mode, click the Analyze button (See Figure 29 Playback Toolbar). The Playback toolbar appears. The Playback toolbar has the following buttons:
 - a. Stop Stop the playback and return to the beginning of the file.
 - b. Start Resume playing the file.
 - c. Pause Pause the playback and maintain the current file location.
 - d. Step Back Steps backwards by the Step Size.
 - e. Step Forward Steps forward by the Step Size.
 - f. Step Size Sets the Step Size to Minor Frame, Major Frame, 10 Major Frames, or 100 Major Frames.
 - g. Playback Speed Sets the playback speed to Max, 4x, 2x, Full, Half, Quarter, or Eight speed. Please note that the Playback speed is an estimate.
 - h. Time Control to jump to specific time stamp.
 - i. Playback Scrollbar Graphical representation of file with a yellow cursor representing the current position. Left mouse click moves the current position.

The user can move the cursor by clicking the left mouse button, holding the button down, and dragging the cursor.

Figure 156 - Playback Toolbar

7. To go back to Live Mode, press the "Live Data" button on the Archive Analyze Tool Bar.

5.8.3 Data Export

To export archived data as decommutated parameters, select a Frame Sync in the Hardware Explorer and then select Archive from the menu bar and select Data Export from the Archive menu. A series of Altair Export Wizard windows are presented.

Some of the windows have a button with black circle with an "i" icon. Clicking this button provides more information about the adjacent option.

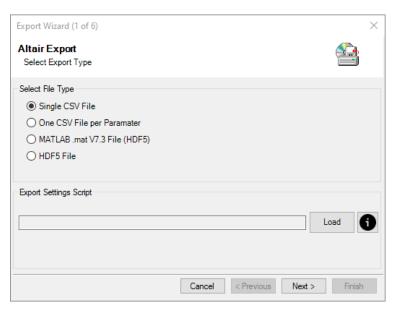


Figure 157 – ALTAIR Export Step 1, Archive Type

Select the File Type and press Next to continue or click the load button to select a Data Export script.

Select File Type:

- 1. Single CSV (Comma Separated Values) File single file with all selected parameters. This file type has multiple options for time tagging the parameter data.
- 2. One CSV File per Parameter creates a CSV file for each selected parameter.

- 3. MATLAB .mat V7.3 File (HDF5) MATLAB mat file version 7.3 which uses the HDF5 format with a MATLAB header. There is not a limit for the size of any parameter.
- 4. HDF5 file HDF5 file format for large datasets and interoperability. This file type is like the MATLAB version 7.3 file type, except it does not include the MATLAB file header.

Export Settings Script:

The Data Export script stores the Data Export settings and allows the user to repeat a previous export without having to navigate the Altair Export windows. The Data Export script is an XML file that can be edited in an XML editor application.

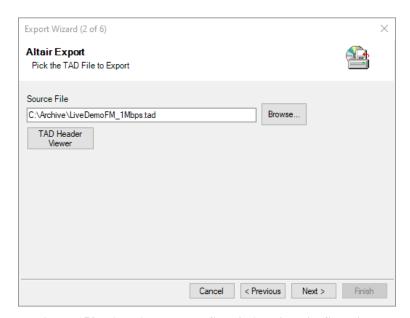


Figure 158 – ALTAIR Export Step 2, Archive File Selection

Source File:

Select the source data file for the export. The 'TAD Header Viewer" button launches a window that displays information, like Bit Rate, Bits Per Minor Frame, Date, etc., that is stored in the TAD File Header

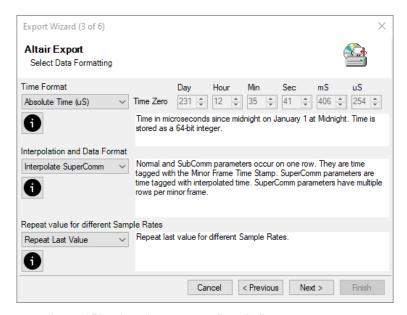


Figure 159 – ALTAIR Export Step 3, Select Data Format

Time Format:

- 1. Absolute Time in microseconds since midnight on January 1 at Midnight. Time is stored as a 64-bit integer.
- 2. Relative Time in microseconds since Time Zero. Time is stored as a 64-bit integer. The default setting for Time Zero is the first time stamp in the data set. Use the controls to the right to set Time Zero.
- 3. IRIG ddd:HH:mm:ss:ffffff Time in IRIG Format. Time is stored as a String.
 - a. String format: "Julian Day: Hour: Minute: Second. Sub-seconds"
 - b. Sub-seconds are six digits of precision (one microsecond resolution).

Interpolation and Data Format:

- 1. Interpolate Super Comm Normal and Sub Comm parameters occur on one row. They are time tagged with the Minor Frame Time Stamp. Super Comm parameters are time tagged with interpolated time. Super Comm parameters have multiple rows per minor frame. No Interpolation All parameters are time tagged with the Minor Frame Time Stamp. Normal and Sub Comm parameters occur on one row. Super Comm parameters have multiple rows per minor frame.
- 2. Interpolate All The decom interpolates time for every parameter based on its position in the Minor Frame Each row is a new sample of one parameter.
- 3. One Row per Minor Frame Each row is a minor frame and time tagged with the Minor Frame Time Stamp. Normal and Sub Comm parameters have one column. A Super Comm parameter has a column for each entry in the minor frame. If the

- Super Comm parameter occurs twice per minor frame, then it has two columns, and the values are in the order that they occur in the minor frame.
- 4. Sample at Frame Rate Each row is a minor frame and time tagged with the Minor Frame Time Stamp. The decom samples parameters at the Minor Frame Rate. Super Comm parameters are sub-sample at once per minor frame.

Repeat Last Value:

- 1. Blank Entry Entries are blank unless the parameter changes at that time stamp.
- 2. Repeat Last Value Repeat last value for different Sample Rates.

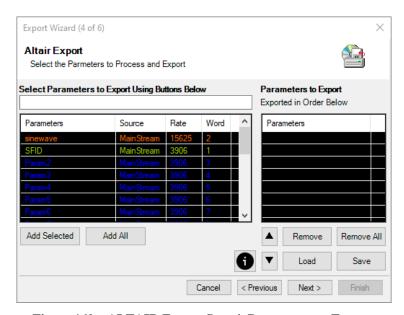


Figure 160 - ALTAIR Export Step 4, Parameters to Export

The Parameters to Export window has controls to select parameters and to save the selected parameters as a template. The list of available parameters is on the left. Selected parameters appear in the list on the right. When done, click Next to continue.

There are three ways to select parameters.

- 1. Select the parameters by left mouse clicking them in the list and then clicking the "Add Selected" button. Select multiple parameters by holding the Control key while left mouse clicking. Select range of parameters by holding the Shift key while left clicking on the first parameter in the range and then the last parameter in the range.
- 2. Click the Select All button to select every parameter.
- 3. Use the Load and Save template buttons. The Save Template button saves the checked parameters. The Load Template button loads a previously saved template.

The Load Template and Save Template buttons allow the user to save the current configuration to an Export Template File (.ETF). The .ETF is a text file with the checked parameter names.

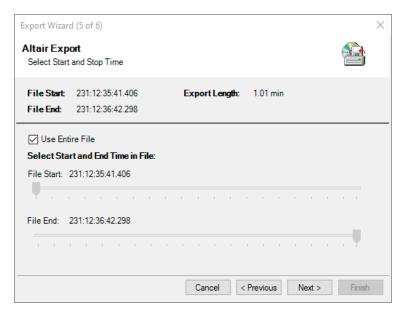
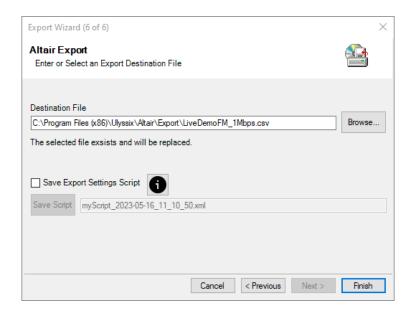



Figure 161 – ALTAIR Export Step 5, Time Selection

The Time Selection window allows the user to either select the entire file or select the start and stop time of the export. The File Start and File stop times are displayed in the IRIG Time format of Day of Year: Hour: Minute: Second. Millisecond.

If Relative Time was selected in the previous window, then the "Use Time Offset" option is enabled.

The Time Offset option allows the user to set a time for Time Zero. Any time before Time Zero is reported as a negative. This allows the user to set the Time Offset as the launch time and relative time as the time into the test event.

Figure 162 – ALTAIR Export Step 5, Destination File

Enter a path and file name or use the Browse button to select a path and file name for the destination of the exported parameter data.

NOTE: In the Multiple CSV file type, only the path is selected because the file names are based on the parameter names. Press Finish to start the export process.

Optionally, select a file name and location to store a Data Export Script file to repeat this export in the future.



Figure 163 – CSV Export File Example

5.8.4 Data Quality Metric

The Data Quality Metric is a software tool in ALTAIR that analyzes recorded telemetry data files. ALTAIR records telemetry data in the Tarsus Archive Data (TAD) format files. In a TAD File, each minor frame has a 96-bit header that contains a 64-bit header, a 16-bit minor frame counter, and a 16-bit status word. The TAD Minor Frame Header is the data source for the Data Quality Metric.

The Ulyssix Tarsus3 / Tarsus4 bit synchronizes, and frame synchronizes the telemetry stream, tags each minor frame with a TAD Minor Frame Header, and then transfers the data to ALTAIR. For the Data Quality Metric, the Frame Sync is placed in "Data in Search Mode." In this mode, the Ulyssix Tarsus3 / Tarsus4 card transfers data to the ALTAIR software even when the Frame Sync is in Search. Data in Search Mode sends all the received bits to the software for Data Quality Metric Analysis.

The Data Quality Metric takes one or more TAD files as input. It reads the data in each TAD file, analyzes its Frame Lock Status and Sub-Frame Locks status, and outputs a time collated Data Quality Metric CSV file. The first column in the Data Quality Metric CSV file is time and each of the TAD files has a column for Frame Lock Status and Sub-Frame Lock Status. The Data Quality Metric also creates a .PNG file for Frame Lock

Status and Sub-Frame Lock Status for each TAD file. These .PNG files are plots of the status versus time where Lock is a 2, Check is a 1, and Search is a 0. These .PNG files create a quick look at the Data Quality Metric. For a more detailed analysis, the data from the CSV file is pasted into an Excel template.

In ALTAIR, select a Frame Sync in the Hardware Explore. ALTAIR enables the Archive menu when a Frame Sync is selected; it does not matter which Frame Sync that you select. In the menu bar at the top of the ALTAIR screen, select Archive and in the menu list, click on "Data Quality Metric" to launch the Data Quality Metric window.

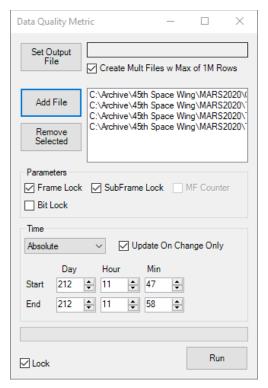


Figure 164 - Data Quality Metric Window

In the Data Quality Metric window, do the following:

- 1. Click the "Set Output File" button. This launches a Save File Dialog window where you select the file name and location for the output CSV file.
- 2. Click the "Add File" button to add a TAD file to the Data Quality Metric. The file names are displayed in the list box to the right of the "Add File" button. To add additional files, click the "Add File" button and select the desired files. To remove a file, select it in the list box and click the "Remove Selected" button.
- 3. Select the Parameters for the Data Quality Metric analysis. The default selections are Frame Lock and Sub-Frame Lock. The default selections are sufficient for most applications.
- 4. Configure Time Type for the Data Quality Metric CSV file using the combo box. The options are Absolute and Relative. Absolute time uses the IRIG Standard Day

- of Year, Hour, Minute, Second, Millisecond, and Microsecond. Relative time sets the first data in the mission at T0 and increments. The default setting is Absolute time.
- 5. Leave the "Update On Change Only" checkbox checked. This feature only updates the CSV file when the Lock Status of one or more elements changes. The "Update On Change" feature is required for using the Data Quality Metric CSV in the Excel template.
- 6. Set the Start Time and End Time controls if desired. The Start Time control defaults to the earliest time found in the files. The End Time controls default to latest time found in the files.
- 7. Click the "Run" button to execute the Data Quality Metric on the selected TAD files. The progress bar at the bottom of the Data Quality Metric window denotes the progress of building the CSV file. A pop-up will notify you when the process is complete.

The Data Quality Metric outputs three kinds of files: The Data Quality Metric CSV file, Data Quality Metric Summary CSV file, and the .PNG images. These files are stored in the file location selected in the Data Quality Metric window. In the image below, there is an example of a Windows Explorer with the Data Quality Metric Output files.

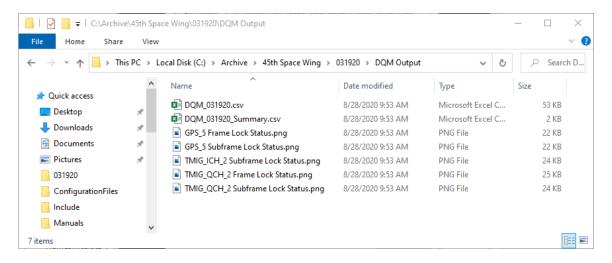


Figure 165 – Data Quality Metric Output Files

In the image above, the Data Quality Metric CSV file is named DQM_031920.csv. The file has three columns for time and then a column for Frame Lock Status and Sub-Frame Lock Status for each TAD file. The first column is the IRIG Time as a string. The format is "Day: Hour: Minute: Second. Millisecond Microsecond." This is the most accurate time stamp, but it is not friendly with Excel Plots. The second column is Microseconds. This column is the number of microseconds since midnight on January 1st. This time is friendly with Excel Plots, but it is not easy to understand. The third column is Time in the Excel format that is both easy to read and friendly with Excel Plots. This time format is HH:MM:SS.mS. This is the column that Excel Template uses. The next six columns are

Lock Status. The first part of the column name is the name of the TAD file. The second part of the column name is the Lock Status name. FLOCK is Frame Lock. SFLOCK is Sub-Frame Lock.

In the example Windows File Explorer above, the Data Quality Metric Summary CSV file is named "DQM_031920_Summary.csv." This file has statistical summaries of each Lock Status for each TAD file. The Summary CSV is used for debugging issues with the data. There are four types of statistics: Time in Seconds for each Lock State. Time Percent in each Lock State. Minor Frame Counts in each Lock State. And Minor Frame Percent in each Lock States. There is one instance of each statistic for Frame Lock Status and for Sub-Frame Lock Status.

1	Α	В	С	D	E	
1		Frame Sync Status Time in Seconds				
2	Source	FLOCK LockTime(s)	FLOCK SearchTime(s)	FLOCK CheckTime(s)	FLOCK TotalTime(s)	
3	TMIG_ICH_2	164.92	0.23	2.178	167.328	
4	TMIG_QCH_2	164.935	0.169	2.226	167.33	
5	GPS_5	167.201	0	0	167.201	
6						
7	Frame Sync Status Time Percent					
8	Source	FLOCK LockTime%	FLOCK SearchTime%	FLOCK CheckTime%		
9	TMIG_ICH_2	98.56	0.14	1.3		
10	TMIG_QCH_2	98.57	0.1	1.33		
11	GPS_5	100	0	0		
12						
13		Frame Sync Status Minor Frame Counts				
14	Source	FLOCK Lock	FLOCK Search	FLOCK Check	FLOCK Total	
15	TMIG_ICH_2	65966	92	830	66888	
16	TMIG_QCH_2	128841	132	940	129913	
17	GPS_5	1672	0	0	1672	
18						
19	Frame Sync Status Minor Frame Percent					
20	Source	FLOCK Lock%	FLOCK Search%	FLOCK Check%		
21	TMIG_ICH_2	98.62	0.14	1.24		
22	TMIG_QCH_2	99.17	0.1	0.72		
23	GPS_5	100	0	0		
24	_					

Figure 166 – Data Quality Metric Summary CSV File

The Data Quality Metric creates a .PNG image file of each Lock Status for each TAD file. The .PNG image is the Lock Status plotted against the time axis. The file name is a combination of the TAD file name and the Lock Status. Lock is a value of 2. Check is a value of 1. Search is a value of 0. The example below is for the TMIG_QCH_2.tad file for the Frame Lock Status. The file name is TMIQ_QCH_2 Frame Lock Status.png.

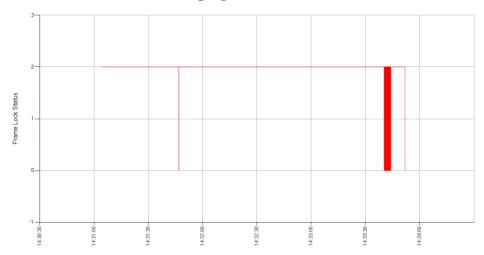


Figure 167 – Data Quality Metric Frame Lock Status PNG File

5.9 UDP Receiver

The UDP Receiver feature allows the ALTAIR software to receive time stamped minor frames in TAD format (see Appendix B – Archive Data Files Explained for details) via UDP and then decommutate and display the data. The UDP Receive feature works in ALTAIR even if the software is running on a computer without a Ulyssix card installed. This feature allows a computer with a Ulyssix PCM card to acquire the telemetry stream and then broadcast the TAD data in UDP packets over the network. Then multiple computers on the network can receive, decommutate, and display the data. Broadcasting TAD UDP data is a licensed feature in ALTAIR.

5.9.1 Configuring ALTAIR to use the UDP Receiver

Configuring ALTAIR to use the UDP Receiver is simple. Load the desired ALTAIR XML file to configure the software. This ALTAIR XML needs to have the Frame Sync configured the same as the computer that is broadcasting the UDP data. The ALTAIR XML file can also have the Decom and displays pre-configured.

5.9.2 UDP Receiver GUI

The UDP Receiver GUI is accessed by selecting a Frame Sync in the Hardware Explorer and then selecting UDP Receiver from the Archive menu. If the Ulyssix PCM card selected in the Hardware Explorer has multiple Frame Syncs, then the UDP Receiver Setup window will have a tab for each Frame Sync.

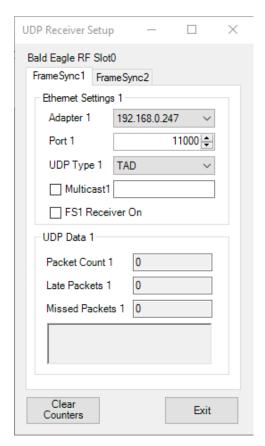


Figure 168 – UDP Receiver

- 1. Enable UDP Data Source This check box enables the UDP Data Source for the selected Frame Sync. Checking this box changes the data source for ALTAIR decom from the Ulyssix PCM card to the UDP Receiver.
- 2. IP Address This combo box is populated with the IP Addresses of every internet connection on the computer. Use the combo box to select the desired internet connection for the UDP Receiver.
- 3. Port This sets the port address for the UDP Receiver on the IP Address. The default value is 11000. The allowed range is 1024 to 65535. Please note that some port numbers have default usages.
- 4. UDP Type This combo box selects the type of UDP data packets for the UDP Receiver. The default is TAD. There is a licensed option to receive Chapter 10 UDP packets.
- 5. Multicast The checkbox enables subscribing to a UDP Multicast on the IP Address in the textbox.
- 6. FS Receiver On This checkbox turns the UDP Receiver on and off.

5.9.3 Using ALTAIR with the UDP Receiver

Once the UDP Receiver is configured and started, data will flow through the ALTAIR software. All the normal ALTAIR features are available, including displays and archiving. Please contact Ulyssix with any questions.

5.10 Generating Reports

The ALTAIR software stores configuration information in an XML based file. This file can be easily viewed using Microsoft Internet Explorer or other third-party XML viewers.

5.10.1 Printing Screens

The ALTAIR software provides the ability to print graphical screen images of the data display screens.

1. On the ALTAIR main screen, select the menu option *File\Print* or *File\Print Preview*. The print selection screen will be displayed. (See Figure 169 – Print Type Selection Form below.)

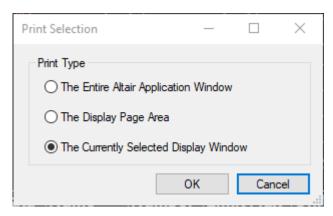


Figure 169 - Print Type Selection Form

- 2. Select one of the following options:
 - **The Entire ALTAIR Application Window** Prints the entire Tarsus application window, including all toolbars, menus, and status windows.
 - **The Display Page Area** Prints the display page area, including the background image.
 - The Currently Selected Display Window Prints the currently selected data display window that resides within the display page area.
- 3. Simply select the type of print screen and click **ok**.
- 4. The standard windows print form will then appear.

5.11 Tools Menu

The Tools menu holds a collection of utilities in the ALTAIR software suite. The tools include default tools as well as Licensed Options (for more information see Chapter 6 Licensed Options).

5.11.1 Card Info

Information about each Ulyssix card installed in the computer is available by selecting a card in the Hardware Explorer, clicking on the *Tools* menu, and then selecting *Card Info*. The Card Info window contains Product ID, Production Year, Production Month, Production Day, Board Number, Model, DAC Revision, Serial Number, the version numbers for the FPGAs, and the FPGA Identity. At the bottom of the Card Info window is a list of the Optional Licensed Features on the Ulyssix Card.

All the information in the Card Info window can be copied by right clicking an item of text and selecting "Copy" from the popup menu. This information can be pasted into Excel using the delimiter as "Tab."

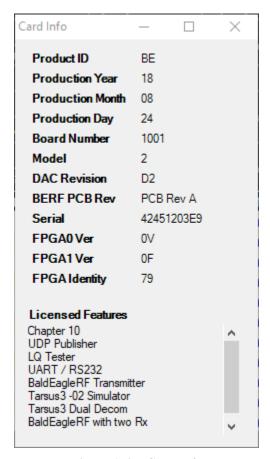


Figure 170 – Card Info

5.11.2 Diagnostic

The Diagnostic feature saves a file to help Ulyssix in debugging hardware issues. To save a Diagnostic file, select Tarsus3 / Tarsus4 or Bald Eagle RF / Bald Eagle RF4 card in the Hardware Explorer, click **Tools** in the menu bar, and then select **Save Diagnostic**.

The Save Diagnostic window has a text box where the user can enter any comments about their configuration or issues. Clicking the Save Diagnostic button will launch a Windows Save File dialog box. Enter a file name and select a directory for saving the file. The file extension should be .TDD (Tarsus Diagnostic Data). Click the Save button. When the file save is complete, please email the file to Ulyssix.

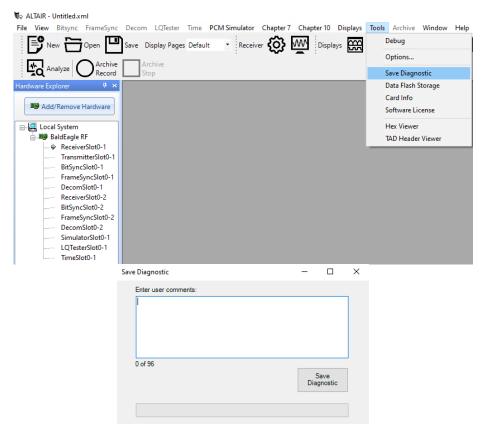


Figure 171 – Save Diagnostic File

5.11.3 Flash Storage

The Tarsus3 / Tarsus4 and Bald Eagle RF / Bald Eagle RF4 cards have an optional Flash Storage capability. If desired, the Flash Storage can be hardware disabled at factory. The Flash Storage is an on-card memory used to record frame synchronized data. The data is stored in the Tarsus Archive Data minor frame format (see Appendix B – Archive Data Files Explained for more information).

The Flash Storage window is accessed by selecting a Tarsus3 / Tarsus4 or Bald Eagle RF / Bald Eagle RF4 card in the Hardware Explorer, clicking *Tools* in the menu bar, and then selecting *Data Flash Storage*.

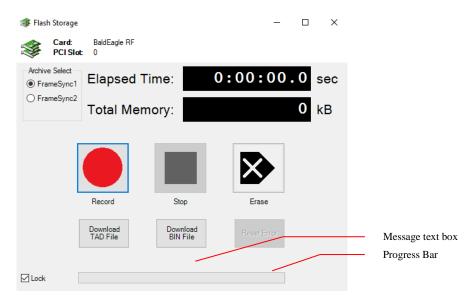


Figure 172 - Flash Storage

The Flash Storage window has multiple controls and displays.

- Archive Select is enabled for a dual decom Tarsus3 / Tarsus4 or Bald Eagle RF / Bald Eagle RF4 card. When FrameSync1 is selected, data from Frame Sync 1 is recorded in the flash. When FrameSync2 is selected, data from Frame Sync 2 is recorded in the flash.
- The Elapsed Time display shows the time of the current operation. While recording, it displays the record time. When erasing, it displays the elapsed time of the erase operation. When downloading data to a file, it displays the elapsed time of the download.
- The Total Memory display shows the amount of memory, in kilobytes, used in the flash.
- The Record button starts recording data from the selected frame sync to the flash. The Record button is disabled during Erase and Download processes.
- The Stop button stops the recording process. The Stop button is only enabled when the Flash Storage is recording.
- The Erase button clears the flash memory. This will erase all data from the flash.
- The Download Memory to Flash button transfers the data stored in the flash to a TAD file stored on the computer hard drive.
- The Message text box is above the Progress Bar. It displays the status of the Flash Storage. Example messages are Recording, Erase in Progress, Saving TAD File, and TAD File Saved.
- The Progress Bar displays a green scrolling bar the Flash Storage is active. The Progress Bar is gray when the Flash Storage is idle.

5.12RPD Programming

The Tarsus3 / Tarsus4 and Bald Eagle RF / Bald Eagle RF4 products are based on the latest advances in Altera FPGA technology and the latest data acquisition integrated circuits which create a very versatile telemetry processor card. The board can perform unique data acquisition and telemetry processing functions, including dual full digitally implemented Bit Syncs, PCM Decoms, multi-channel clock data recovery (CDR) modules, SGLS modulator/demodulator, and other data acquisition applications. The basis for the card is two 14-bit analog to digital paths into over three million gates of user configurable space. The configurable space is made up of Altera high-density FPGAs. The FPGA circuitry can be modified in the field by using the FlashBurnTM utility.

Appendix F – **FlashBurn**TM Utility describes how to use FlashBurnTM, a proprietary stand-alone utility to program the FPGA circuitry.

References

[1] <u>Telemetry Standards</u>, IRIG STANDARD 106-17, Secretariat, Range Commanders Council, White Sands Missile Range, Mew Mexico.

https://www.trmc.osd.mil/wiki/display/publicRCC/106+Telemetry+Standards

Chapter 6 Licensed Options

Ulyssix Technologies Inc. provides optional features which can be purchased separately through our sales department. This chapter will provide a brief overview of all our current available options and detailed information about a select few. The following options listed below are currently available:

- **Viterbi Decoder and Forward Error Correcting Option** Provides Viterbi decoding on Bit Sync and Forward Error Correcting on the PCM Simulator.
- Chapter 7 Option Allows the user to receive Chapter 7 Ethernet packets or process the Chapter 7 PCM data from the Bald Eagle RF card. This option allows the user to be able to process the Chapter 10 PCM packets within the Chapter 7 transmission. This option also allows the user to record the IRIG Chapter 10 format and playback through the archive simulator plus UDP Ethernet transmission and reception in Chapter 10 packets.
- Chapter 10 Option Receive and transmit Chapter 10 UDP packets as well as record and replay Chapter 10 files. Includes playing PCM data and IRIG Time from a Chapter 10 file out of the PCM Simulator and DAC Output.
- **UDP Publisher Option** Provides UDP streaming of time tagged frame data and/or decom parameters.
- **Telemetry Over IP (TMOIP)** Broadcast or receiver IRIG 2018 Telemetry Over IP UDP Packets via Internet Protocol Version 4.
- **LQ Tester Option** Provides functionality for the latency and quality of a PCM signal.
- **RS232** (**UART**) **Output Option** Provides the ability to transmit Decom parameter data through 4 RS232 (UART) on-board ports.
- **Real Time Simulator** Allows the user to change PCM Simulator word values in real time via slider or numeric entry.
- **IRIG Time Output** Outputs amplitude modulated IRIG-B or NASA 36 time through a BNC connector. Time is set from current computer time, user entered seed time, or from an archive file.
- CVSD Audio Output Option provide audio playback through the computer sound card for uncompressed and CVSD audio embedded in the telemetry stream.

- Cyclic Redundancy Check Option Uses the CRC error detecting code and a check value word in the frame to verify frame data integrity.
- **Best Source Selector Option** This feature allows the Tarsus3 / Tarsus4-02 to perform best source selection between two channels. It selects the best PCM stream based on frame sync and outputs it. (This feature is only available with the Tarsus3 / Tarsus4-02.)
- **Missed Distance Calculator Option** Uses Doppler data to calculate distance between two objects.
- Tarsus3 / Tarsus4-02 Dual Decom Enables two Decoms on a Tarsus3 / Tarsus4-02 card. This option converts a Tarsus3 / Tarsus4-02 to two channels of Bit Sync, Frame Sync, and Decom.
- Bald Eagle RF / Bald Eagle RF4 Transmitter Adds one RF transmitter per PCM channel to the Bald Eagle RF / Bald Eagle RF4. The Transmitter licensed feature includes all the following bands: C, S, L, Extended P, P, and IF.

6.1 License Management

Ulyssix Technologies, Inc. provides optional features which can be purchased separately through our sales department. A license key will be provided for changing the licensed features on a Ulyssix card. These license keys are entered into the FlashBurn utility (See **Appendix F – FlashBurn**TM Utility).

6.2 Viterbi Decoding and Forward Error Correcting Option

6.2.1 Viterbi Decoding in the Bit Sync

The Bit Sync uses a commonly known Viterbi algorithm to decode convolutionally encoded data that has a $k/n = \frac{1}{2}$ rate, constraint length K = 7, and G1, G2 generator polynomials 171_8 , 133_8 and 3-bit soft decision.

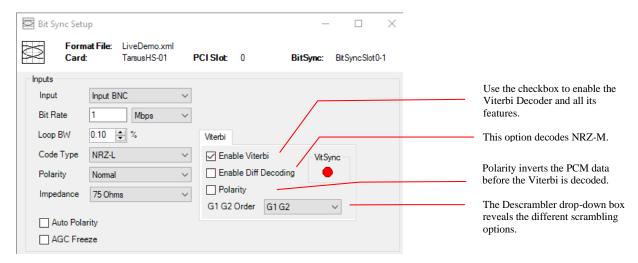


Figure 173 – Bit Sync Setup Window Displaying Viterbi Features

Once the ALTAIR software has detected a valid Viterbi license, an additional tab is made available in the Bit Sync Setup window as shown in Figure 173 – Bit Sync Setup Window Displaying Viterbi Features.

Viterbi Options:

- Enable Viterbi: Turns on the Viterbi Decoder.
- Diff Encoding: On, decodes NRZ-M data. Off, decodes NRZ-L data.
- Polarity: Inverts the PCM data before the Viterbi decoder.
- G1G2 Order:
 - 1. G1 G2
 - 2. G1 G2Inv
 - 3. G1Inv G2
 - 4. G1Inv G2Inv
 - 5. G2 G1
 - 6. G2Inv G1
 - 7. G2 G1Inv
 - 8. G2Inv G1Inv

When Viterbi decoding is enabled, the user must click the Apply button to download the settings to the FPGA. Since this is a rate ½ decoder, data being received by the Bit Sync is moving at twice the specified bit rate. The actual Viterbi bit rate is shown at the bottom of the main ALTAIR window. (See Appendix G – FEC and Viterbi Theory for a detailed explanation on FEC and Viterbi decoding.) Users can verify successful Viterbi Decoding by monitoring the Frame Sync indicator. Whenever the decoder is running, the Frame Sync lock indicator will display a green lock light. If the lock light is not green, make sure the box labeled "Enable Viterbi" is checked, and click the Apply button again. If that does not resolve the problem, verify the Encoder is running and the received message was encoded to match the design constraints of the Viterbi decoder.

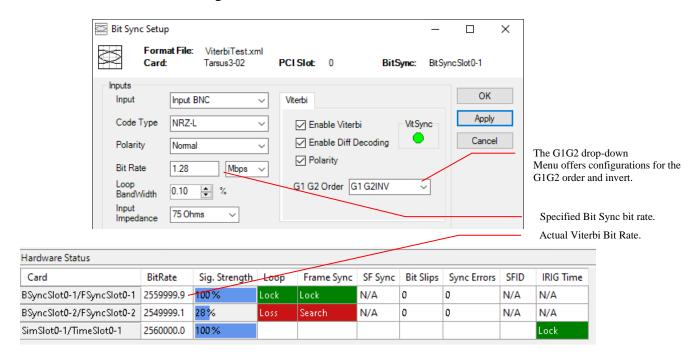


Figure 174 – User Specified Bit Rate and Viterbi Bit Rate

6.2.2 Viterbi in the PCM Simulator

The Ulyssix Simulator provides Forward Error Correction capabilities by creating a Viterbi encoded serial data stream. This feature is available with the purchase of Viterbi license. Please contact Ulyssix for details.

The Viterbi options are located under the FEC tab as shown in Figure 175 – Simulator Setup Displaying FEC Features. Select this tab and check the box labeled Enable to turn on the convolutional encoder. The Encoder is a rate $\frac{1}{2}$, constraint length =7 and G1, G2 generator polynomials 171_8 and 133_8 .

Figure 175 – Simulator Setup Displaying FEC Features

FEC Options:

- Enable: Turns on the Convolutional Encoder.
- Diff Encoding: On, provides convolutionally encoded NRZ-M data.
 Off, provides convolutionally encoded NRZ-L data.
- Polarity: Inverts the PCM signal before the FEC encoding.
- G1G2 Order:
 - 1. G1 G2
 - 2. G1 G2Inv
 - 3. G1Inv G2
 - 4. G1Inv G2Inv
 - 5. G2 G1
 - 6. G2 G1Inv
 - 7. G2Inv G1
 - 8. G2Inv G1Inv

6.3 Chapter 10 Option

The Ulyssix Chapter 10 Option includes a suite of tools for IRIG106 Chapter10 files and UDP streams for the ALTAIR software. With the Chapter 10 Option, ALTAIR records multiple PCM streams in a Chapter 10 file. ALTAIR extracts a PCM channel from a Chapter 10 file and outputs the PCM data from the Ulyssix card's Archive Simulator. The Chapter 10 Option includes tools for publishing and receiving Chapter 10 UDP streams. There is also an implementation of the IRIG 106 Chapter 6 Record and Reproducer Command and Control TCP Interface. This TCP interface configures ALTAIR and the Chapter 10 UDP Publisher remotely via a standard TCP command set.

6.3.1 Recording Chapter 10 File

ALTAIR records one Chapter 10 file that contains each of the PCM channels acquired by the Ulyssix PCM cards in the computer. Each PCM channel is recorded using the same PCM Mode.

To configure the Chapter 10 File Recorder, select on any Frame Sync in the ALTAIR Hardware Explore. In the menu bar, click on Chapter 10, then select Recorder Settings from the list to launch the Ch10 Recorder Settings Form.

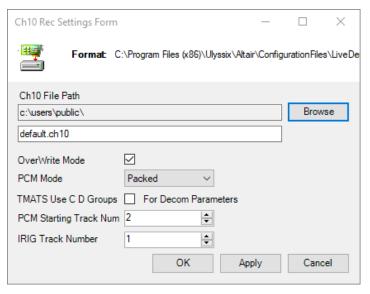


Figure 176 - Ch10 Record Settings Form

The Ch10 Recorder Settings Form has a **Browse** button to select the location and file name for the Chapter 10 file. The **Overwrite Mode** checkbox determines if the current file is overwritten or if a suffix is applied to the end of the file name to preserve multiple recordings.

There is also a combo box to select the **PCM Mode**. The available **PCM Modes** are: Packed, Throughput, Throughput Aligned, and Unpacked. To record data in Throughput

Mode, the ALTAIR turns off the Frame Sync in the Ulyssix PCM card. When the Frame Sync is off, ALTAIR does not receive data for displays.

Throughput Aligned Mode is not part of the IRIG106 Chapter 10 Standard. The PCM data is frame synchronized and then stored in an IRIG106 Chapter 10 PCM Throughput Mode packet. The advantage of Throughput Aligned Mode is that the Ulyssix PCM card Frame Sync is on and therefore ALTAIR receives data for displays and the PCM data is stored in the familiar Throughput Mode format.

The checkbox **TMATS uses C D Groups** toggles if the TMATS file includes the C and D groups for Decom Parameters. This value is not checked by default. The C and D groups drastically increase the size of the TMATS and should only be used when including the Decom Parameter setup in the TMATS is required.

PCM Start Track Number sets the track number for the first PCM Channel. The default value is track two. The IRIG standard states that TMATS is track number zero. Usually, IRIG Time is track one. The **IRIG Track Number** control sets its track number.

Click **OK** or **Apply** to save changes. Please note that these settings apply to every PCM channel. ALTAIR does not currently support recording multiple Chapter 10 Files at once or recording multiple PCM Modes in the same Chapter 10 file.

Starting and stopping a Chapter 10 file uses the same controls as the Archive feature. The toolbar contains an Archive Record button and an Archive Stop button. Click the Archive Start button to begin recording the Chapter 10 and TAD file. Click the Archive Stop button to end the recording.

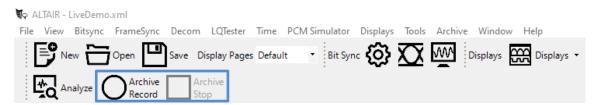


Figure 177 – Archive Record and Archive Stop Toolbar Buttons

6.3.2 Playing Chapter 10 File Through the Archive Simulator

ALTAIR extracts a PCM channel from a Chapter 10 file and plays the PCM stream through the Archive Simulator. The Chapter 10 PCM channel can be either Throughput or Packed Mode; Unpacked Mode is not supported. Chapter 10 files recorded in ALTAIR's Throughput Aligned Mode are considered Throughput Mode for Archive Simulator playback. Contact Ulyssix for questions about using the Simulator with Unpacked Mode Chapter 10 PCM Packets.

Launch the ALTAIR Simulator Setup window by double clicking on the desired Simulator entry in the Hardware Explorer. In the Simulator Setup window, select the

Archive Data radio button to change the Simulator Setup into Archive Simulator mode. In the Simulator Output section, ensure that the Enable checkbox is checked, enter the Bit Rate, and select the Code Type.

In the Archive Info section of the Simulator Setup window, click the Browse button to launch a File Open dialog window. In the File Open dialog window, select a Chapter 10 file and click the Open button. Next, ALTAIR scans the selected Chapter 10 file. The length of the scan depends on the number of channels and the length of the Chapter 10 file. Once the scan is complete, click the Ch10 PCM Settings button to launch the Chapter 10 File window.

In the Chapter 10 File window, select the PCM Channel and set the time range of the PCM Channel. Use the PCM Chan drop-down box to select the desired PCM Channel. The PCM Chan drop-down box includes the PCM Mode of the channel. When the PCM Chan drop-down box selection changes, the Frame Settings section of the window also changes. These settings are read from the Chapter 10 file TMATS. The displayed settings are only as accurate as the TMATS. These settings are used for display purposes only. In the Time Selection section, use the Start and End sliders to select the start and end times of the PCM data. The default is to play the entire recording. Click the OK button to confirm the settings.

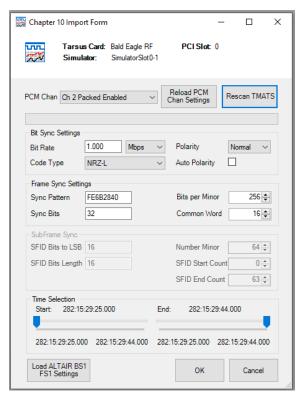


Figure 178 - Chapter 10 File Window

In the Simulator Setup window, click the Start Transfer button to begin playing the Chapter 10 PCM Channel out of the Archive Simulator. The Current File Location will

move as ALTAIR processes the Chapter 10 file. When ALTAIR reaches the end of the file, it wraps back to the beginning of the file. The Time display shows the time stamp from the IRIG Chapter 10 file. The Output Buffer Display shows the status of the Ulyssix PCM card's Archive Simulator FIFO. Click the Stop button to end playing the Chapter 10 file.

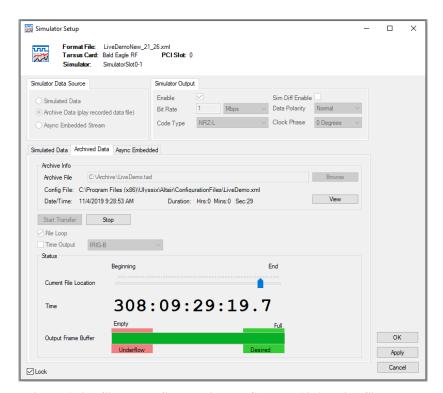


Figure 179 – Simulator Setup Window Chapter 10 Archive Simulator

6.3.3 Publishing Chapter 10 UDP

ALTAIR publishes Chapter 10 UDP packets to one UDP stream that contains each of the PCM channel acquired by the Ulyssix PCM cards in the computer. Each PCM channel uses the same PCM Mode.

To configure the Chapter 10 UDP Publisher, select any Frame Sync from the Hardware Explorer and click Chapter 10 on the menu bar, select Ch10 UDP Tx.

Figure 180 - Chapter 10 UDP Publisher Toolbar Icon

The Ch10 UDP Publisher window configures the output Ethernet Adapter and the PCM Mode. There is also an option to save the TMATS to a text file.

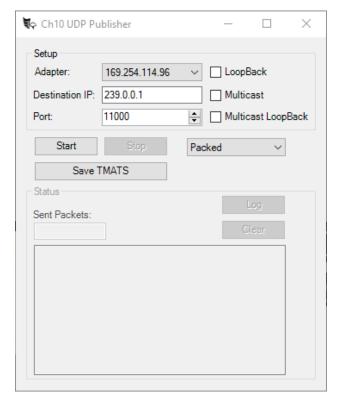


Figure 181 - Ch10 UDP Publisher Window

UDP packets transmission has three modes: unicast, broadcast, and multicast. Unicast delivers UDP packets to a single IP address. Broadcast delivers UDP packets to every IP address on any node set to 255. For example, 192.168.255.255 delivers UDP packets to every computer on the network whose IP address begins with 192.168. Multicast delivers UDP packets to one or more computers that subscribe to the multicast address. The ALTAIR computer sends the UDP packets to a router and then the router makes copies of the packets and sends them to any computer that subscribes to the multicast.

The Adapter combo box determines which Ethernet adapter ALTAIR uses for UDP stream. ALTAIR populates the combo box with every Adapter and IP address on the computer. The Adapter combo box also contains the IP Address 127.0.0.1 for local loopback. The Adapter combo box is important when a computer has multiple Ethernet connections.

The Destination IP textbox defines the destination IP address for unicast, broadcast, and multicast. This textbox will error check the entry to ensure that the entry is in the valid format for an IP address. Invalid entries turn red.

There are three checkboxes: LoopBack, Multicast, and Multicast LoopBack. Only one of the three checkboxes can be checked. Checking the Lookback checkbox forces the Destination IP address to the Loopback IP address of 127.0.0.1. In LoopBack mode only one application receives the Ch10 UDP packets. Checking the Multicast checkbox sets the Ch10 UDP Publisher into Multicast mode. The error checking on the Destination IP

Address text box will enforce a valid Multicast IP address. The valid Multicast IP address range is 224.0.0.0 to 239.255.255.255. Checking the Multicast LoopBack checkbox sets the Ch10 UDP Publisher into Multicast LoopBack mode. Multicast LoopBack is a special case of Multicast where the UDP Packets do not leave the computer. The Ethernet adapter receives the UDP packets, manages the subscription to the Multicast group, and distributes the packets as needed. Multicast LoopBack distributes Chapter 10 UDP packets to multiple applications on the same computer.

Clicking the Start button begins the UDP Packet Publishing. The Stop button stops the UDP Packet Publishing. The UDP Ch10 Publisher window displays the number of sent packets in a textbox. The start and stop times are logged in the text window. Clicking the Log button launches a window that logs the statistics for each channel in the Chapter 10 stream.

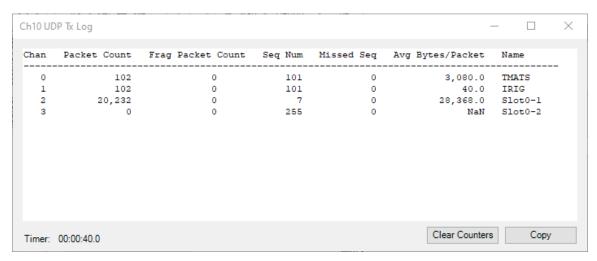


Figure 182 - Ch10 UDP Publisher Log Window

The Ch10 UDP Publisher Log Window displays a line for each Chapter 10 Channel. IRIG106 Chapter 10 defines Channel 0 as TMATS. In ALTAIR, Channel 1 is always IRIG Time. The window shows the number of packets sent, the number of fragmented packets, the current Chapter 10 Packet Sequence Number, the number of missed Sequences, and the Average Bytes per Packet. This information is used to debug issues when an application has issues receiving Chapter 10 UDP Packets from ALTAIR.

IRIG106 Chapter 10 defines a Fragmented Packet as a Chapter 10 packet that broken into one ore fragment because the original packet is larger than 32kB. Chapter 10 sets 32kB as the maximum UDP packet size. The Chapter 10 Sequence number is part of the Chapter 10 Packet Header. Each Chapter 10 gets an 8-bit Sequence Counter. When the Sequence Counter reaches 255, it wraps back to 0. For more information about Fragmented Packets and Sequence Counters, please see IRIG106 Chapter 10 documentation.

6.3.4 Receiving Chapter 10 UDP

ALTAIR can receive one Chapter 10 UDP stream and distributes its PCM channels to user selected Frame Syncs in ALTAIR. To configure the ALTAIR Chapter 10 UDP Receiver, click on any Frame Sync in the Hardware Explorer, select Chapter 10 from the menu bar, and select Chapter 10 UDP Rx from the list to launch the Ch10 UDP Rx window.

The Ch10 UDP Rx window has four sections: Ethernet Settings, UDP Packets, TMATS, and PCM Channels. The Ethernet Settings configure the Ethernet Adapter, Port Number, and the IP Address of the Chapter 10 UDP source. The UDP Packets section displays statistics on the received packets as well as options to display Packet Details and to save the UDP Packet counter log to a file. The TMATs section displays the PCM Channels and their settings as they are described in the TMATS of the Chapter 10 UDP stream. There is a button to save the TMATS to a file for detailed examination. The PCM Channel section defines which Chapter 10 PCM Channel is assigned to which ALTAIR Frame Sync.

In the Ethernet Settings section, select the Ethernet Adapter by its IP Address. The Adapter drop-down lists the active IP Addresses in the computer as well as 127.0.0.1, which is the LoopBack IP Address. Next, enter the Port Number. Enter the IP Address of the Chapter 10 UDP source. If the Chapter 10 UDP source is Multicast, check the Multicast checkbox. Click the UDP Receiver On button to start the UDP Receiver. When the UDP Receiver is on, the button is light blue. When the UDP Receiver is off, the button is gray. The UDP Packet section counters begin logging the received UDP packets. When Chapter 10 UDP Receiver processes the first TMATS packet, ALTAIR populates the TMATS section and enables the PCM Channels section.

The PCM Section has a line of controls for each Frame Sync channel listed in the ALTAIR Hardware Explorer. The first control is the Enable button. The Enable button controls if the selected Chapter 10 PCM Channel data is sent to the ALTAIR channel. When enabled, the button is light blue. When disabled, the button is gray. The second control is the Ulyssix Card. This control shows the Ulyssix Card's Model Number and PCI Slot. The third control is the Frame Sync number. The Frame Sync number indicates which Frame Sync number in the Ulyssix Card. The last control is a drop-down box to select the Chapter 10 PCM Channel.

To configure the PCM Channel Section, first click the Enable button to enable the Frame Sync Channel. Second, select the Chapter 10 PCM Channel number. Details for the Chapter 10 PCM Channel Number are in the TMATS section. Once the PCM Channels are configured, press the Apply button to pass the settings to ALTAIR.

The Chapter 10 UDP Receiver settings are saved to the ALTAIR configuration file. When you open the file, ALTAIR will automatically configure and enable the Chapter 10 UDP Receiver.

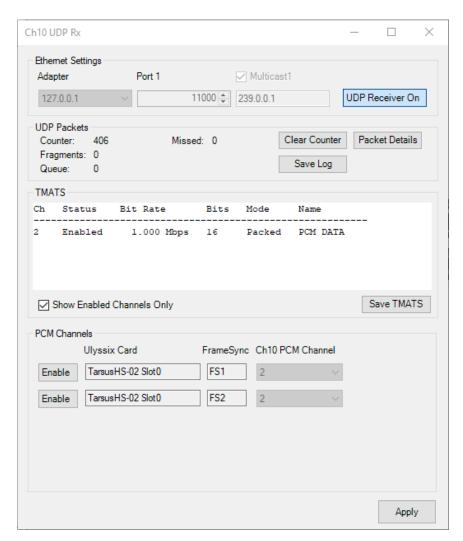


Figure 183 - Ch10 UDP Rx Window

In the UDP Packets section, there are three buttons: Clear Counters, Packet Details, and Save Log. The Clear Counters button resets the counters in the UDP Packets. The Save Log button saves a log file with the details about any fragmented or missed packets. The Packet Details button launches the Ch10 UDP Rx Packet Log window.

The Ch10 UDP Rx Packet Log window displays the packet statistics for each of the channels in the Chapter 10 UDP stream. The IRIG standard states that TMATS is Channel 0. In ALTAIR, Channel 1 is always IRIG Time. Each channel has its enabled state, packets per second rate, packet counter, missed packets, late packets, and missed packet rate. This information is provided to help debug UDP transmission issues. The Clear Counters button resets the counters to zero. The Copy button copies the text to the clipboard, then the data can be pasted into another application.

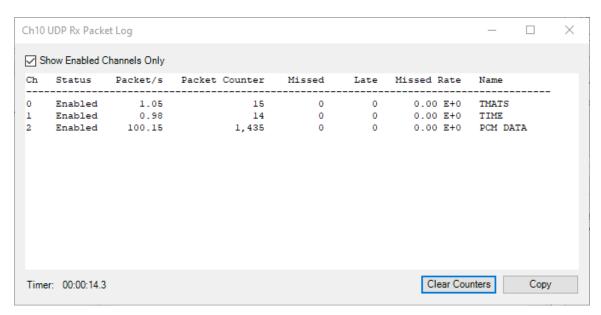


Figure 184 – Ch10 UDP Packet Log

6.3.5 IRIG106 Chapter 6 Recorder and Reproducer Command and Control

ALTAIR accepts the IRIG106 Chapter 6 Recorder and Reproducer Command and Control via a TCP connection. By default, the Chapter 10 TCP Listener server is disabled when ALTAIR starts. The user must manually start the Chapter 6 TCP Listener manually or configure ALTAIR to start the Chapter 6 TCP Listener when it starts. The Chapter 10 TCP Listener is disabled by default to alleviate security concerns.

To configure the Chapter 6 TCP Listener, select Tools from the menu bar and click on Options to launch the Options window. In the Options window, click on the Ch10 tab to access the Chapter 6 TCP Listener settings. The settings in the Option window are stored in an XML on the computer and are loaded when ALTAIR launches. The checkbox "Enable Ch 6 Listener when ALTAIR Starts" controls if the TCP listener is launched when ALTAIR starts. The Chapter 6 TCP Listener IP Address drop-down box sets the IP Address for the TCP listener. The Chapter 6 TCP Listener IP Address must be set before the Chapter 6 TCP Listener is launched. IRIG106 Chapter 6 Section 10.4.3 defines the Port Number as 10610. This value cannot be changed.

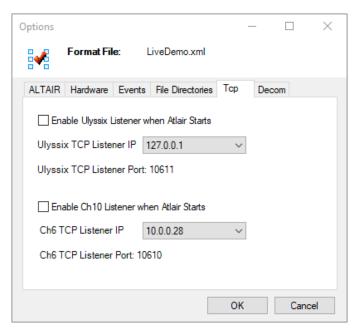


Figure 185 – ALTAIR Options Ch10 Settings

To manually start the Chapter 6 Listener, select a Frame Sync from the Hardware Explorer, click on Tools in the menu bar, and then select "Ch 6 TCP Listener" from the menu list to launch the Ch 6 TCP Listener window. When the Ch10 TCP Listener window is open, the TCP Sever is open and waiting for connections. Once the Ch 6 TCP Listener window is opened, the IP address cannot be changed.

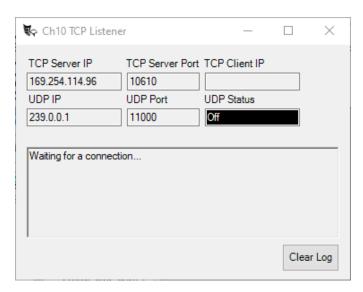


Figure 186 - Ch10 TCP Listener Window

The command set for the Chapter 10 TCP Listener is a subset of the commands from IRIG106 Chapter 6 section 6.2 CLI Command and Control. These commands all begin a period and end with a carriage return and line feed. The commands are not case sensitive in ALTAIR. The specifics for the command syntax and rules are in Ch 6 6.2.1. The Error

Codes are listed in Ch 6 6.2.2. For example, code to send IRIG106 Chapter 6 CLI Commands, contact Ulyssix.

The command ".TMATS WRITE 0" tells ALTAIR to wait for a TMATS file. The file is transferred via the TCP connection. ALTAIR know that the TMATS file is complete when it receives the command "END." After the END command, ALTAIR processes the TMATS file using the R Group and P Group to configure the Bit Syncs and Frame Syncs in the computer.

The command ".PUBLISH" returns the current IP Address and Port Number.

The command ".PUBLISH START 192.168.0.123 11000 1" starts streaming the Chapter 10 UDP data on IP 192.168.0.123 Port 11000 Stream 1. ALTAIR does not use the Stream number. Any number is allowed.

The command ".PUBLISH STOP 192.168.0.123 11000 1" stops streaming the Chapter 10 UDP data. Please note that the IP Address and Port Number in the Stop command must match the values from the start command. The Stream number is not required to match.

- 1. Supported commands:
 - a. .HELP
 - i. IRIG106 Chapter 6 Section 6.2.3.4
 - ii. No parameters.
 - iii. Returns a list of implemented commands.
 - b. .IRIG106 and .IRIG-106
 - i. IRIG106 Chapter 6 Section 6.2.3.5
 - ii. No parameters.
 - iii. Returns the IRIG106 Ch10 Version number.
 - c. .PUBLISH [Keyword] [Parameter List]
 - i. IRIG106 Chapter 6 Section 6.2.4.22
 - ii. Parameters: Keyword and Parameter List
 - Keyword: secondary commands. Ulyssix implemented the Keywords: START and STOP. If the Keyword is blank, then the response is the current IP Address, Port, and Stream.
 - Parameter List: used to send the IP Address, Port, and Stream for the Publish Start Command. The Ulyssix Implementation does not require a Stream value. It will accept any value for Stream, but the value will be ignored. Ulyssix did not implement selection of output data by Stream.
 - iii. Implementation Keywords:
 - 1. START sets the IP Address and Port Number for the UDP transfer and begins sending UDP Packets. IP

- Addresses in the UDP Multicast Range of 224.0.0.0 to 239.255.255.255. A START command sent while the UDP is already running will receive an error message of "E 05" for Command Failed.
- 2. STOP stops sending UDP packets. A STOP command sent while the UDP is not running will receive an error message of "E 05" for Command Failed.
- 3. {blank} no keyword queries the current settings for IP, Port, and Stream. The stream is set to ALL by default but changing the value of Stream has no effect on the software.
- d. TMATS {mode} [N]
 - i. IRIG106 Chapter 6 Section 6.2.3.11
 - ii. Parameters: Mode and N
 - 1. Mode: secondary command. Ulyssix implemented three of seven Modes: WRITE, READ, and CHECKSUM.
 - 2. N: Range of 0-15 to save up to sixteen TMATS files. Ulyssix implementation will accept any value of N, but it will be ignored. Ulyssix implemented only one TMATS file.
 - iii. Implemented Modes:
 - 1. WRITE transfers TMATS from the host computer to the Ulyssix computer.
 - 2. READ transfers TMATS from the Ulyssix computer to the host computer.
 - 3. CHECKSUM calculates the SHA-256 hash for the TMATS file. The SHA-256 hash calc excludes the TMATS tag g\SHA and its associated text.

6.4 UDP Frame Publisher Option

The UDP Publisher option consists of two separate features: UDP Frame Publisher and the UDP Parameter Publisher. Both features ship data from the ALTAIR software via User Datagram Protocol (UDP). The UDP Frame Publisher sends UDP packets of time tagged minor frame data. The UDP Parameter Publisher sends UDP packets of user selected decom parameters.

6.4.1 UDP Frame Publisher

The UDP Frame Publisher data is transmitted in packets in Little Endian format. Each packet begins with a four-byte packet header. The packet header is a thirty-two-bit packet counter. The rest of the packet contains multiple minor frame data blocks. The number of minor frame data blocks is determined by the bits in a minor frame and the bit rate. A UDP packet is sent on an approximate 10mS interval.

The minor frame data block is composed of a twelve-byte header followed by a minor frame of data. The header contains a time tag and information about the lock status. This is the same data format that is used in the Archive Data File (.TAD File). For more information about data format, please see Chapter 8 Archive Data Files Explained.

If the Telemetry Over IP (TMOIP) option is purchased, then the UDP Frame Publisher has the option to broadcast IRIG 218 UDP Telemetry Over IP via Internet Protocol Version 4. This option is available in the Packet Type combo box.

6.4.1.1 Configuring the UDP Frame Publisher

After the UDP Frame Publisher is licensed, select a Frame Sync from the Hardware Explorer window, click Archive from the menu bar, and select UDP Publisher.

6.4.1.2 UDP Frame Publisher Setup Form

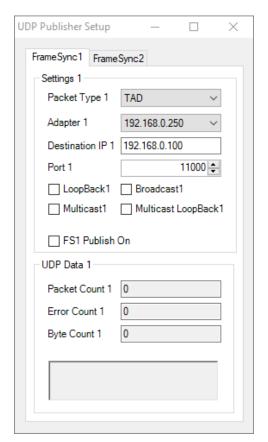


Figure 187 – UDP Frame Publisher Setup Form

The UDP Frame Publisher Form requires the following settings:

- 1. Packet Type This combo box selects the data type for the UDP packet. The primary packet type is the Ulyssix TAD format. If the Telemetry Over IP option is purchased, the TMOIP packet type is added.
- 2. IP Address This is a combo box populated with a list of all the computer's network cards IP addresses. The user should select the entry of the network card to broadcast the UDP packets.
- 3. Destination IP This is the network address of the computer to receive the UDP packets. The check boxes for Loop Back and Multicast disable the Destination IP text box and use a fixed destination IP.
- 4. Loop Back Sets the Destination IP address to 127.0.0.1. This IP address causes the ethernet port to internally loop the output to the input. Loop Back is used to export data in real time to an application running on the same computer. Only one application can receive Loop Back UDP packets.
- 5. Multicast Configures the UDP Publisher into Multicast mode. This requires a Multicast compliant IP Address between 224.0.0.0 to 239.255.255.255.
- 6. Broadcast Sets the last byte of the Destination IP address to 255. The first three bytes of the Destination IP address stay the same resulting in x.y.z.255. Setting the last byte to 255 causes the ethernet adapter to broadcast the UDP packets to all computers with the IP address with the first three bytes of x.y.z. Industrial

- network switches might block packets addressed to x.y.z.255. Please consult your network administrator for more details.
- 7. Multicast Loop Back Configures the network adapter into a special case of Multicast where the UDP Packets do not leave the computer. The Ethernet adapter receives the UDP packets, manages the subscription to the Multicast group, and distributes the packets as needed. Multicast Loop Back distributes UDP packets to multiple applications on the same computer.
- 8. Port Number Selects the port on the selected network adapter IP address. The default value for FrameSync1 is 11000 and the default value for FrameSync2 is 11001. Only one Frame Sync can broadcast on a given IP Address and Port Number. The Port Number is limited to the range 1024 to 65535.
- 9. FS Publish On When checked, the UDP broadcast is on and the other UDP Publisher controls are disabled. When unchecked, no UDP packets are broadcast.

The UDP Frame Publisher form also displays the number of packets sent, the number of errors sent, and the number of bytes sent. The Packet Count text box displays the number of packets broadcast. The Error Count text box displays the number of packets that did not broadcast due to transmission issues.

6.4.2 UDP Parameter Publisher

The UDP Parameter Publisher allows the user to select decom parameters for publishing in UDP Packets. A UDP Parameter Packet is sent on an approximate 10mS interval.

The UDP Parameter Packet consists of a Packet Header, a Payload Header, and a Payload. The Packet Header has a 32-bit Integer UDP Packet Counter and information about the setup of the Payload. The Payload Header includes information about Payload as well as the time stamp of earliest parameter in the payload. The UDP Parameter Packets are described in detail in the document Ulyssix UDP Parameter Packet Format. To open, select Decom under Hardware Explorer. Then select Decom on the menu bar and UDP Param Output.

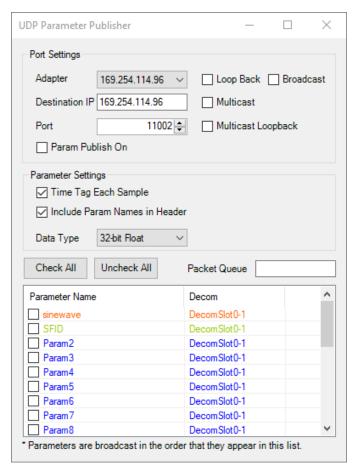


Figure 188 – UDP Parameter Publisher Setup Form

6.4.2.1 UDP Parameter Publisher Setup Form

The configuration of the UDP Parameter Publisher Form begins with the Port Settings. These determine the source and destination IP address and port number.

- 1. IP Address This is a combo box populated with a list of all the computer's network cards IP addresses. The user should select the entry of the network card to broadcast the UDP packets.
- Destination IP This is the network address of the computer to receive the UDP packets. The check boxes for Loop Back and Multicast disable the Destination IP text box and use a fixed destination IP.
- 3. Loop Back Sets the Destination IP address to 127.0.0.1. This IP address causes the ethernet port to internally loop the output to the input. Loop Back is used to export data in real time to an application running on the same computer.
- 4. Broadcast Sets the last byte of the Destination IP address to 255. The first three bytes of the Destination IP address stay the same resulting in x.y.z.255. Setting the last byte to 255 causes the ethernet adapter to broadcast the UDP packets to all computers with the IP address with the first three bytes of x.y.z. Industrial

- network switches might block packets addressed to x.y.z.255. Please consult your network administrator for more details.
- 5. Multicast Configures the UDP Publisher into Multicast mode. This requires a Multicast compliant IP Address between 224.0.0.0 to 239.255.255.255.
- 6. Multicast Loop Back Configures the network adapter into a special case of Multicast where the UDP Packets do not leave the computer. The Ethernet adapter receives the UDP packets, manages the subscription to the Multicast group, and distributes the packets as needed. Multicast Loop Back distributes UDP packets to multiple applications on the same computer.
- 7. Port Number Selects the port on the selected network adapter IP address. The default value for FrameSync1 is 11000 and the default value for FrameSync2 is 11001. Only one Frame Sync can broadcast on a given IP Address and Port Number. The Port Number is limited to the range 1024 to 65535.
- 8. Param Publish On When checked, the UDP broadcast is on and the other UDP Publisher controls are disabled. When unchecked, no UDP packets are broadcast.

The Parameter Settings controls give the user the ability to configure the UDP packet.

- 1. Time Tag Each Sample When checked, each data value is paired with a time stamp. If the Data Type is 32-bit float, then the time is a 64-bit floating point number. If the Data Type is a 64-bit signed integer, then the time is a 64-bit unsigned integer.
- 2. Include Param Names in Header When checked, the names of the selected parameters are included at the end of the data packet header.
- 3. Data Type There are two options in the drop-down: 32-bit Float and 64-bit Signed Integer. The 32-bit Float option sets the data to 32-bit float and the time stamp to 64-bit float. The 64-bit Signed Integer option sets the data to 64-bit signed integer and time stamp to 64-bit unsigned integer.

The last set of user controls are for selecting the desired parameters from the provided list and the Packet Queue. The Packet Queue is the number of UDP packets waiting to be shipped out of the port. Also, there is a list of parameters with check boxes. All decom parameters are included. If the Ulyssix PCM card is equipped with two Decoms, the parameters from both Decoms are included in the list.

Check the box next to a parameter to include it in the UDP packet. The "Check All" button to selects all parameters and an "Uncheck All" button to unselect all parameters. The standard Windows usage of the Shift key and Control key work on selecting parameters in the list box.

The Shift key allows the selection of multiple consecutive rows. Left click the mouse to select one parameter and then hold the Shift key and click another parameter. All the rows will be highlighted. Now click a check box and all the highlighted rows will have same check state.

The Control key allows the selection of multiple rows. Hold the Control key and left mouse click to select rows. The rows do not have to be consecutive. Now click a check box and all the highlighted rows will have the same check state.

6.4.2.2 Using the UDP Parameter Publisher Data Rate

The UDP Parameter Publisher has a data rate limit, above this data rate the UDP packets back up in the Packet Queue and the UDP Parameter Publisher may lose data. The data rate calculation depends on multiple factors and the calculation below is an estimate. There are situations where this calculation is too conservative, and a higher data rate will be successful. Please watch the Packet Queue counter. It should stay at a stable, small number.

Calculate the data rate using the follow:

Minor Frame Rate = Bit Rate / Bits per Minor Frame

Data Rate = Number of Selected Parameter Occurrences per Minor Frame * Minor Frame Rate

The Number of Selected Parameters Occurrences per Minor Frame is the total number of times that a selected decom parameter appears in a minor frame. This calculation is complicated by Sub Comm, Super Comm, Random, and Random Normal commutation types.

The number of bits in the decom parameters do not play in this calculation. When the decom parameter is extracted from the telemetry stream, the Bit Order and Numeric Data Type is applied and then the resulting value is stored in a 64-bit integer. This 64-bit integer is then converted into Data Type selected in the UDP Parameter Publisher form. Therefore, whether the decom parameter originated as an 8-bit word or 16-bit word, it will be transmitted in the UDP Parameter Packet as the same fixed size.

Calculation Example:

Bit Rate – 10 Mbps Bits per Minor Frame – 800-bits

There are four parameters selected:

- 1. One Normal Commutation occurs once per minor frame.
- 2. Two Super Commutation occurs four per minor frame.
- 3. Three Random Commutation occurs twice per minor frame.
- 4. Four Normal Commutation occurs once per minor frame.

Minor Frame Rate = 10 Mbps / 800 bits = 12.5 kSample / secNumber of Selected Parameter Occurrences per Minor Frame = 1 + 4 + 2 + 1 = 8Data Rate = 8 * 12.5 kSample / sec = 100 kSample / sec

Data Rate Limits (Data Type as 32-bit Float):

With Time Tagging Each Sample 1.2 MSample / sec

This is an entire frame of 16-bit decom words at 20Mbps (with both Time Tag Each Sample and Include Parameter Names in Header turned on). The Data Rate Limit increases when Time Tag Each Sample is turned off. Omitting the time tagging reduces the data in each packet.

6.5 LQ Tester Option

The LQ Tester measures both the quality of the data through a bit sync, as well as the latency time it takes to go from the Tarsus3 / Tarsus4-01 simulator back to the internal bit sync or external data path. The LQ Tester setup form has a Bit Error Rate Tester (BERT) section that can be configured to use an internally setup simulator format or pre-stored industry standard patterns.

6.5.1 Initiating the LQ Tester

When an LQ Tester license is active, an LQ Tester will appear in the Hardware Explorer window. To setup the LQ Tester, double click LQ Tester in the Hardware Explorer or click on LQ Tester on the toolbar.

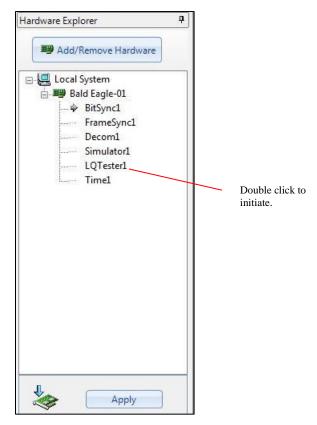


Figure 189 – LQ Tester Startup

6.5.2 LQ Tester Setup Form

The LQ Tester Setup Form configures both the transmit function and the receive function for both the latency and the quality (BERT) functions.

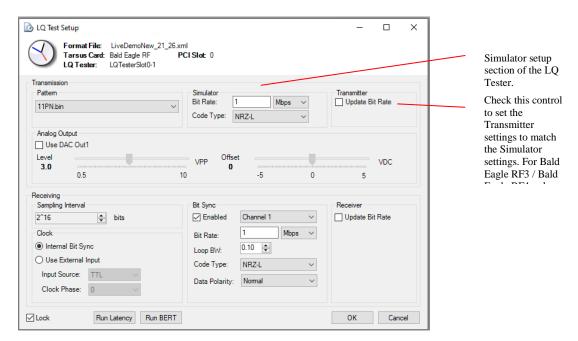


Figure 190 - LQ Tester Transmission Setup Form

- 1. For **Transmission**, the following patterns are selectable:
 - Current Simulator Setup uses the last configuration used in the PCM simulator.
 - O 1024B Pattern is a 1024-bit repetitive pattern that also uses the IRIG 32-bit sync pattern of 0xFE6B2840 and then the same pattern of the 256B. After the end of the 256 bits then there is a repetitive pattern of 0xAAAA for the remaining 1024 bits to increase the bit transition density.

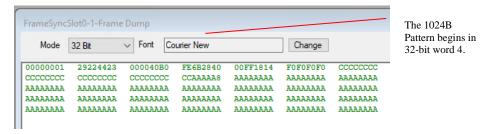


Figure 191 - 1024B Pattern

o 11PN Pattern - is a standard 2047-bit pseudo-random pattern that starts with a 32-bit sync pattern of 0xB70D671F and then continues with the 11PN exclusive-OR pattern for the remaining 2047 bits. The Ulyssix implementation is eight consecutive frames of the pattern to create a binary file that is 2047 bytes.

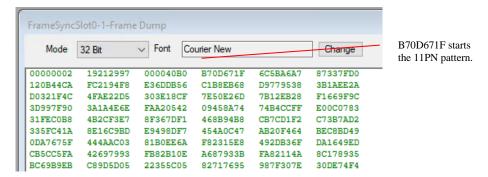


Figure 192 – 11PN Pattern

o 11PN_2048 Pattern - is a standard 2047-bit pseudo-random pattern that starts with a 32-bit sync pattern of 0xB70D671F and then continues with the 11PN exclusive-OR pattern for the remaining 2047 bits. The Ulyssix implementation zero fills the last bit to form a complete byte.

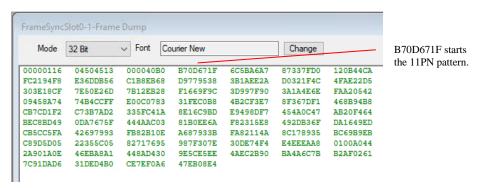


Figure 193 – 11PN 2048 Pattern

o **15PN Pattern** - is a standard 32767-bit pseudo-random pattern that starts with a 32-bit sync pattern of 0xECA06B1 and then continues with the 15PN exclusive-OR pattern for the remaining 32767 bits. The Ulyssix implementation is eight consecutive frames of the pattern to create a binary file that is 32767 bytes.

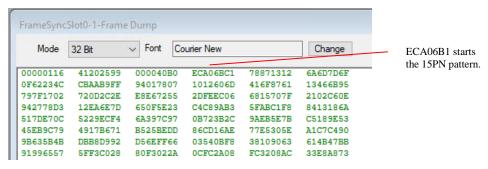


Figure 194 – 15PN pattern

o **15PN Baker Pattern** – is a standard 32767-bit pseudo-random pattern that starts with a 32-bit sync pattern of 0xB70D671F and then continues with the 11PN exclusive-OR pattern for the remaining 2047 bits.

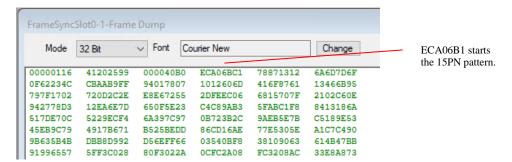


Figure 195 – 15PN Baker pattern

256B Pattern - is a 256-bit pattern with the IRIG 32-bit sync pattern of 0xFE6B2840 and then a pattern of 16-bit words that change the transition density from all ones to all zeros.

Figure 196 - 256B Pattern

o **25TD Pattern** - is a 25% transition density pattern. This is accomplished by using the nibbles 0xF and 0x0.

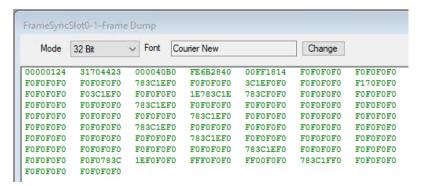


Figure 197 – 25TD Pattern

GU Pattern - is a 32-bit sync pattern of 0xC4B890EC followed by 358 sixteen-bit words of 0xA0A0. This pattern creates a string of six '0's then a '1' then a '0' then a '1' which is difficult to lock onto at bit rates above 20 Mbps.

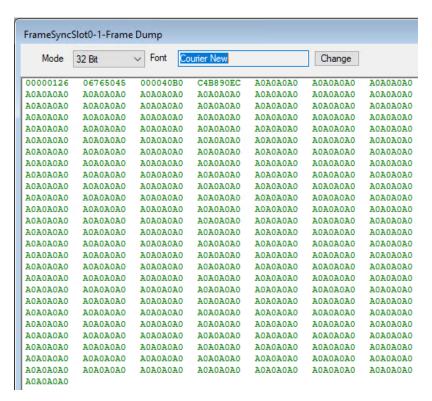


Figure 198 - GU Pattern

- Select the transmission bit rate and code type for the PCM data to be output from the LQ Tester. The data is output through the SIMOUT and SIMCLK BNC outputs on the Tarsus3 / Tarsus4 pigtail connector.
- 3. When setting up the **Receiving** section of the LQ Test Setup form, select a sampling interval for the BERT function. This interval is used to select the resolution and accuracy desired for the bit rate and data type selected. The larger the intervals, the more the number of samples are measured, the longer the time between measurements occurs. The sampling interval is selectable for intervals from 2^8 to 2^32 with 2^4 spacing.

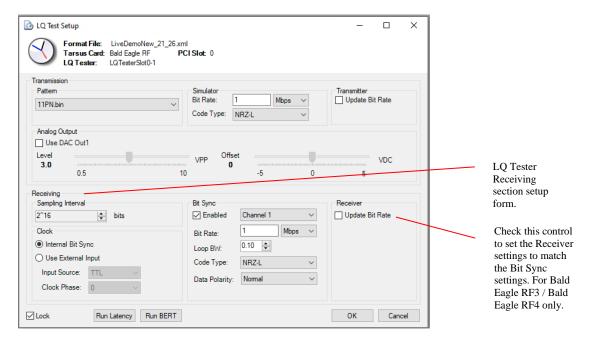


Figure 199 - LQ Tester Receiving Setup Form

- 4. Use **Internal Bit Sync** for receiving data through the CH1IN BNC or use **External Input** and the data will be input through the DECOMIN and DECOMCLK BNC cables on the Tarsus3 / Tarsus4 pigtail. An external **Clock Phase** is also selectable, like the Frame Sync input section in the ALTAIR software.
- 5. If using **Internal Bit Sync**, the user can change the Bit Sync settings from the LQ Tester form by checking the "Enabled" box under **Bit Sync Setup**. These controls change the input bit rate, code type, and data polarity.

If the transmitting and receiving sections have different bit rates or code type, then the exact same pattern must be generated and used to obtain a correct BERT reading.

6.5.3 BERT Run Form

To start a Bit Error Rate Test, click the **Run BERT** button on the LQ Tester setup form. The following form will open:

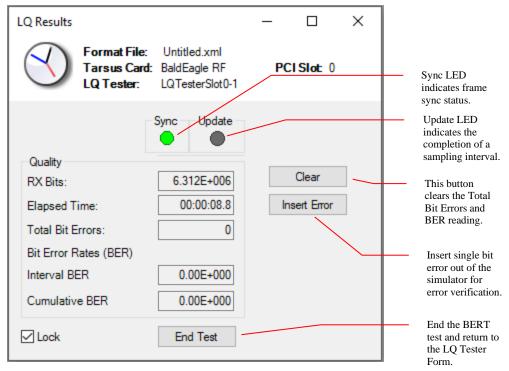


Figure 200 - BERT LQ Results Form

- 1. A **Sync** indicator shows the Frame Sync Status. The **Update** indicator blinks one time per completion of a sampling interval.
- 2. The **RX Bits** field shows the total number of received bits since the test began.
- 3. The **Elapsed Time** displays the quantity of time since the test started. Time is in the "Hour: Minute: Second. Sub-second" format.
- 4. **Interval BER** indicates the number of bits received by the BERT that did not match the values transmitted during the last interval.
- 5. **Cumulative BER** updates at the sampling interval selected. It is the calculation of the number of bit errors seen divided by the number of bits transmitted during the entire test.

6.5.4 Latency Test Form

A Latency Test measures the time difference between when the data leaves the Tarsus3 / Tarsus4 Simulator output to when the Frame Sync receives the data. Clicking the **Run** Latency button on the LQ Tester Setup Form launches the Latency Test form and starts a continuous running latency test. The form displays the **Current Delay** as the external time. The software takes the measured time and subtracts the calibrated the internal time delay of the card. The internal timer doing the calculations has an 11.2 nanosecond resolution.

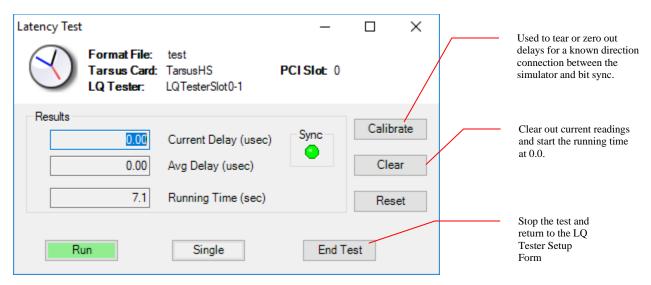


Figure 201 – Latency Test Form

- 1. The **Current Delay** reading is a single test reading in microseconds where the **Avg. Delay** reading is a running boxcar average of the last one hundred single latency readings.
- 2. To run a single latency test, hit the **Single** button. This disables the continuous run mode and only gives a single reading. To restart continuous mode, hit **Run.**
- 3. Use the **Calibrate** button to calibrate, or zero, the latency tester for the current connection between the simulator output and the Bit Sync input. The way to use this feature is to connect a short BNC cable between the two BNC connections and then hit the Calibrate button. The display should show a reading of +/- 0.5 microseconds. This is the calibrated delay for the next cabling configuration.
- 4. Hit the **End Test** button to return to the LQ Tester setup form. After completing a test using the LQ Tester, users can save the setup by hitting the **Save** button for the entire project. The LQ Tester settings will be saved with the rest of the ALTAIR setup in a specified .XML file format.

6.6 RS232 Parameter Output (UART)

The RS232 Parameter Output option outputs decom parameters through any of the four Universal Asynchronous Receiver/Transmitter (UART) outputs. Multiple parameters can be selected to be output through each UART port, allowing users to output an asynchronously sampled parameter. However, each parameter can only be output to one UART port. To output the same data to multiple BNCs, the user must create additional decom parameters referencing the desired data. All UART port settings are programmable.

6.6.1 RS232 Setup

When the RS232 Parameter Select feature is licensed and a Tarsus3 / Tarsus4 card is selected in the Hardware Explorer, a new icon will appear in the toolbar. This button allows the user to quickly open the RS232 Setup Form for the system.

Figure 202 - RS232 Setup Button

After the form opens a list of all selectable parameters will be displayed as well as the Universal Asynchronous Receiver/Transmitter (UART) settings. To setup a channel:

1. Select and enable desired UART port by clicking on a UART folder tab.

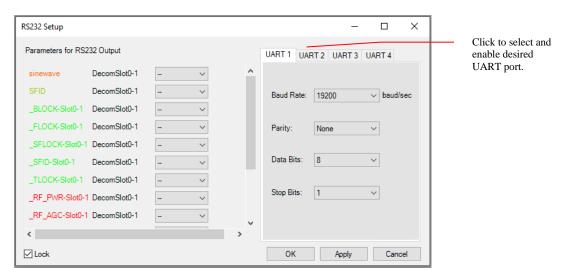


Figure 203 – RS232 Setup Form

- 2. Set the UART baud rate, data bits, stop bits, and parity. The baud rate is only limited by the receiving hardware.
- 3. Check the parameters for the selected port.

- 4. Press OK to update RS232 Param Display and to apply changes to the hardware.
- 5. Place the selected parameters into a tabular display and output them through the UART BNC.

Data	Name	ValChar Loc	COM Port	Baud Rate
4369	Param2	0	UART1	19200
8738	Param3	0	UART2	19200

Figure 204 - RS232 Parameter Display

A parameter will only be output through the UART BNC if it is in a parameter display and the assigned valid character bit is high.

6.6.2 Valid Character Bit

The Ulyssix RS232 Output feature allows the user to select a single bit of the desired parameter to function as the valid character bit. When this bit is high (binary value of 1), the parameter data is valid, and the parameter is output through the UART BNC. If the bit is low (binary value of 0), the data is invalid, and the parameter is not output via the UART BNC.

The Valid Character bit is set on each parameter's Parameter Edit/Add form. To open this form, double-click the parameter in the Parameter View screen.

The Valid Character bit is defined according to the parameter bit mapping. For example, if a parameters LSB (least significant bit) is defined as bit 0, and the Valid Character bit is set to bit 1, this indicates that the Valid Character bit is the second least significant bit of the parameter.

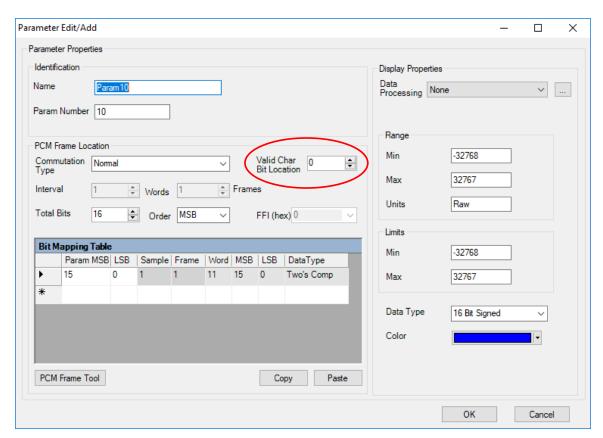


Figure 205 - Parameter Edit/Add Form

6.7 CVSD Audio Output Option

The CVSD Audio Option takes embedded audio from the telemetry stream and plays it out of the computer sound card. A sound card with external speakers is required for this option. The CVSD Audio Option played both uncompressed embedded audio and CVSD compressed embedded audio.

The CVSD Audio Output Option is selected by selecting a Decom from a Ulyssix PCM Card and then selecting "Auto Output" from the Decom menu. Or by selecting the Audio Output icon from the toolbar.

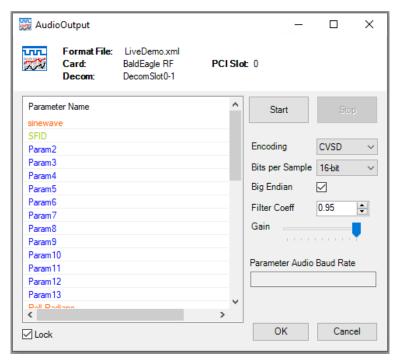


Figure 206 - Audio Output Form

The list on the left-hand side of the window contains all of decom parameters for the selected decom. The controls for the Audio output on are the right side.

- 1. Start This button starts the audio playback. It disables all the controls except for the Gain.
- 2. Stop This button stops the audio playback.
- 3. Encoding This drop-down box has the option for CVSD or Raw. Raw is uncompressed audio.
- 4. Bits per Sample This drop-down box selects the encoding for the audio. The options are 16-bits or 8-bits. Please contact Ulyssix for other Bits per Sample options.
- 5. Big Endian This check boxes indicates if the data is in Big Endian or Little-Endian format. Typically, the format is Big Endian.
- 6. Filter Coeff This control allows the user to decrease the cut off frequency for the low pass filter. Reducing the value from the default 0.95 will decrease the

- noise in the audio at the cost of both gain and frequency range. The maximum allowed value is 1.00 and the minimum allowed value is 0.50.
- 7. Gain This slider controls a digital gain for the audio. Reducing the digital gain can reduce audio clipping and signal distortion.
- 8. Parameter Audio Baud Rate This displays the Audio Baud rate for the selected signal and settings. This value should match the audio baud rate specified for the telemeter.

6.8 Real Time Simulator Option

The Real Time Simulator feature allows the user to change the values of predefined fixed value parameters in the PCM Fixed Frame Simulator using a slide bar or numeric entry. This feature is designed to trigger warning level for parameters.

Begin by setting up the major frame simulator. Below, is a simulator with five parameters defined: Sine, Param2, Param3, Time0, and Time1. There are two new buttons: Start Stream and Stop Stream. These buttons start and end the Real Time Simulator.

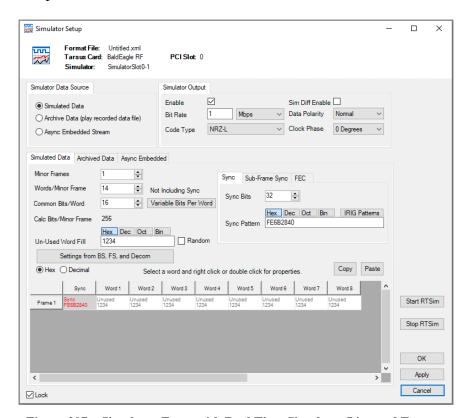


Figure 207 - Simulator Form with Real Time Simulator Licensed Feature

Clicking the Start Stream button begins the Real Time Simulator and launches the Simulator Channel Control form. The form contains two sections. The top section determines the number of Channel Controls. The bottom section contains the Channel Controls.

Form Controls

- 1. The Num of Controls numeric control determines the number of Channel Controls displayed in the form. The form is resizable to fit the controls.
- 2. The Hex and Decimal radio buttons determine if the values are displayed in decimal or hexadecimal format.

Channel Controls

- 1. Left and Right Arrow Select the simulator channel for the control. The right arrow increases the channel number. The left arrow decreases the channel number.
- 2. Channel # This is either the channel number or channel name of the selected simulator channel.
- 3. Word This is the PCM word number in the frame for the selected simulator channel.
- 4. Frame This is the frame number where the word first occurs. This will always be one for Normal and Super Commutated words.
- 5. Comm Type The commutation type for the selected simulator channel.
- 6. Bits: The number of bits in the selected simulator channel.
- 7. Param Type This displays the value for Fixed Value simulator channels and the function name for Function simulator channels.
- 8. Data Type Sets the data computation value for the Control channel. Binary allows values from 0 to 2^n -1 where n is the number of bits in the simulator channel. Two's Compliment allows from -2^(n-1) to 2^(n-1)-1 where n is the number of bits in the simulator channel.
- 9. Value There is a numeric control and a slider control. These two controls are tied together; changing one changes the other. Changing the value of either control changes the value in the PCM Simulator for this simulator channel.

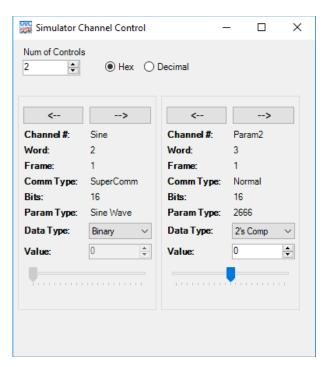


Figure 208 - Simulator Channel Control Form

In the example below, we examine Param2. The current value in the Channel Control is zero. This is the same value displayed on the strip chart and the numeric display in the first image. In the second image, the value is changed to 6553. The third image shows a value of -16384. This is below the limit of -1600 set for Parm2 and the meter shows the "Low Limit" warning.

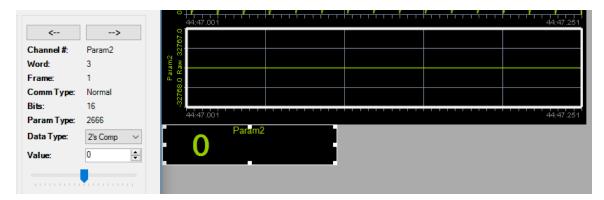


Figure 209 - Channel Control Form Value of 0

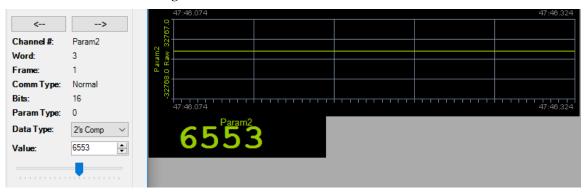


Figure 210 – Channel Control Form Value of 6553

Figure 211 - Channel Control Form Value of -16384 and Low Limit Violation

If the strip chart is zoomed out far enough, dragging the slider left to right will cause an oscillation in the strip chart.

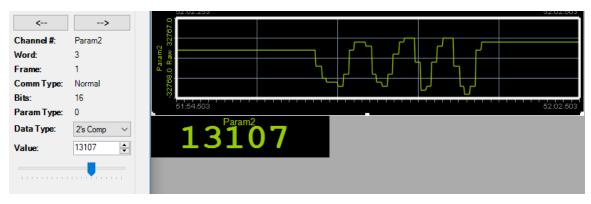


Figure 212 - Channel Control Form and Oscillation in the Strip Chart

6.9 IRIG Time Output Option

The IRIG Time Output feature plays amplitude modulate time code out of the DAC1 BNC. The available time codes are IRIG-B (B123) and NASA 36. The IRIG Time Output is accessible in the Time Setup Form as well as part of the Archive Simulator in the Simulator Setup Form.

Time Setup Form

In the Time Setup form, the Time Code Output controls are only available if the feature is licensed. The seed time for the IRIG Time Output can be set to the current computer time or seeded to any day of the year, hour, minute, second, and millisecond. The time output does not start until the Apply or OK button is pressed.

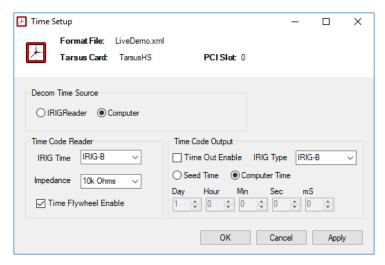


Figure 213 – Time Setup form with IRIG Time Output Controls

- 1. Time Out Enable This checkbox determines if the IRIG Time is output from the DAC1 BNC.
- 2. IRIG Type This combo box selects the IRIG Time Type. The available sections are IRIG-B and NASA 36.
- 3. Seed Time and Computer Time This radio button determines if the time output seed is from the computer time or from a user specified time. Selecting Seed Time causes the numeric controls for Day, Hour, Min, Sec, and mS to become enabled.
- 4. Day Sets the Julian Calendar day of the year. Valid from 0 to 365 (365 is for leap year).
- 5. Hour Sets the hour of the day from 0 to 23.
- 6. Min Sets the minute. Valid from 0 to 59.
- 7. Sec Sets the second. Valid from 0 to 59.
- 8. mS Sets the millisecond. Valid from 0 to 999.

Archive Simulator

IRIG Time Output has controls inside of the Archive Simulator. The IRIG Time Output works in conjunction with the Archive Simulator on both TAD and Chapter 10 Files (Licensed Feature).

Below the Start Transfer button, there is a check box to enable the Time Output and a combo box to set the IRIG Time Type. The available choices for the IRIG Time Type are IRIG-B and NASA 36. Before pressing the Start Transfer button, select the desired IRIG Time Type and check the Time Output check box. Click the Start Transfer button and the PCM data flows out of the Simulator BNC and IRIG Time flows out of the DAC1 BNC.

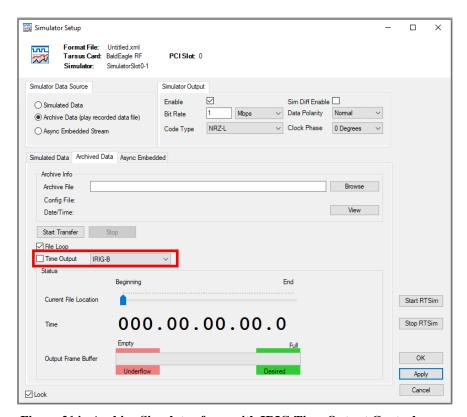


Figure 214 - Archive Simulator form with IRIG Time Output Controls

6.10 Bald Eagle RF / Bald Eagle RF4 Transmitter

The Bald Eagle RF / Bald Eagle RF4 Transmitter feature includes one transmitter per receiver channel on the card. A Bald Eagle RF / Bald Eagle RF4 has one transmitter. The Transmitter setup is accessible by selecting the Transmitter under Hardware Explorer.

The transmitter power range is approximately -20 dBm to -90 dBm, depending on the selected frequency band. The frequency bands include C Band (4400 to 5950 MHz), S Band (2185 to 2485 MHz), L Band (1420 to 1850 MHz), Extended P Band (500 to 1250 MHz), P Band (200 to 500 MHz), and IF (50-90MHz).

The transmitter produces a continuous wave or modulated signal. The source for the modulator is either the Bald Eagle RF / Bald Eagle RF4 simulator or the RF down converted signal from the receiver. Setting the transmitter source to the receiver's down converted signal is referred to as the Frequency Translator. The Frequency Translator takes the input from the Receiver and then transmits the identical signal at a different frequency. This is useful for moving a signal between frequency bands, like from S Band to C Band, for testing purposes.

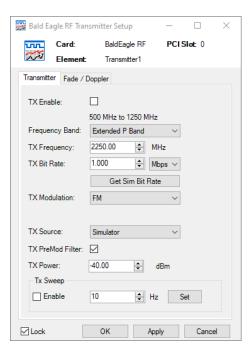


Figure 215 – Bald Eagle RF / Bald Eagle RF4 Transmitter Setup

- 1. **Tx Enable** This checkbox enables and disables the transmitter power.
- 2. **Frequency Band** This combo box selects the frequency band for the transmitter. The allowed bands are C Band. S Band, L Band, Extended P Band, P Band, and IF. The frequency range for the selected band is displayed next to the combo box. The selection of the Frequency Band sets the range of allowed values for the Tx Frequency control.

- 3. **Tx Frequency** This numeric entry sets the desired RF carrier frequency for the transmitter. Entries are in the units of MHz and the allowed range is set by the selection in the Frequency Band combo box.
- 4. **Tx Bit Rate** The numeric entry and combo box set the Bit Rate value and Bit Rate Units for the modulator. This value is used as part of the settings for the modulation of the PCM Simulator data.
- 5. **Get Sim Bit Rate** This button gets the Simulator Bit Rate and Bit Rate Units values and inserts them into the Transmitter Bit Rate and Bit Rate Unit controls. This ensures that the Simulator and Transmitter Bit Rate settings match.
- 6. **Tx Modulation** This combo box sets the modulation scheme for the transmitter. The options are CW (Continuous Wave), FM, SOQPSK, BPSK, QPSK, GMSK, and Wideband FM. CW sets the transmitter to output an unmodulated continuous wave at the Tx Frequency. FM, SOQPSK, BPSK, QPSK, GMSK, and Wideband FM use a modulator to create the baseband modulated signal from the PCM Simulator data.
- 7. **Deviation Sensitivity** This controls sets the Deviation Sensitivity for Wideband FM only. The allowed range is 0.35 to 20. The Deviation Sensitivity multiplied by the bit rate multiplied by two is the deviation.
- 8. **Tx Source** This combo box selects the input source for the transmitter. There are three options. They are Freq Translator, Simulator, and TTL Input. The Freq Translator option uses the down converted signal from the Receiver as the data source for the transmitter. The Simulator option uses the PCM data from the Bald Eagle RF / Bald Eagle RF4's simulator and the modulator for the data source of the transmitter. The TTL Input uses the external DECOM IN BNCs as an external PCM TTL input stream to modulate the Bald Eagle RF / Bald Eagle RF4 transmitter.
- 9. **Tx PreMod Filter** This checkbox turns on and off the pre-modulation filter for PCM data. This option is only available when the Tx Modulation is set to FM.
- 10. **Tx Power** This numeric control sets the output power of the transmitter. Allowed values are from -20 dB to -100. The true output power is limited based on the selected frequency band.

Chapter 7 Appendix A – Installation Troubleshooting/Problems

Troubleshooting problems with the installation breaks into two categories: Hardware Detection and Video Adapter Support.

7.1 Hardware Detection

One common problem is the installation of the device drivers.

The first step in trouble shooting hardware installation is to determine whether the ALTAIR software recognizes the hardware. Complete the following steps to determine this:

- 1. Start the ALTAIR software and verify under the **Tools/Options** screen that the "Automatically Scan Hardware on New Configuration" option is checked.
- 2. On the main screen of the Tarsus software, click on the "New" toolbar button.
- 3. Verify the hardware installed is displayed in the **Hardware Explorer** window. (See **4.1.2 Hardware Explorer Window**) If the hardware is not detected, continue to the next step.
- 4. Verify that Windows has identified the newly installed hardware. Open the Control Panel/System window. Select the Hardware tab and then click on the **Device Manager** button.
- 5. If your system is running the Jungo driver, open the Jungo folder in the hardware list. The display should look like **Figure 216 Device Manager Jungo Driver**.
- 6. If your system is running the Ulyssix driver, open the Ulyssix Technologies, Inc folder in the hardware list. The display should look like **Figure 217 Device Manager Ulyssix Driver**.

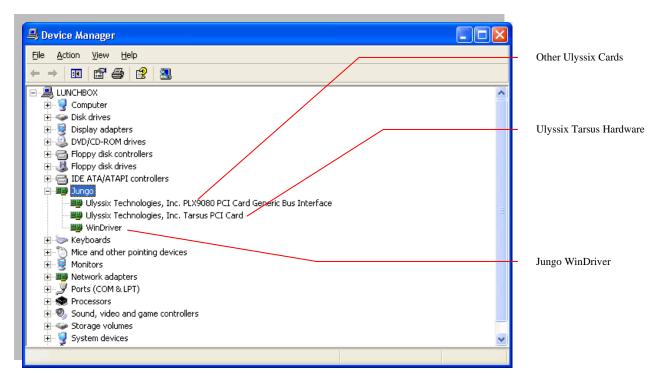


Figure 216 - Device Manager Jungo Driver

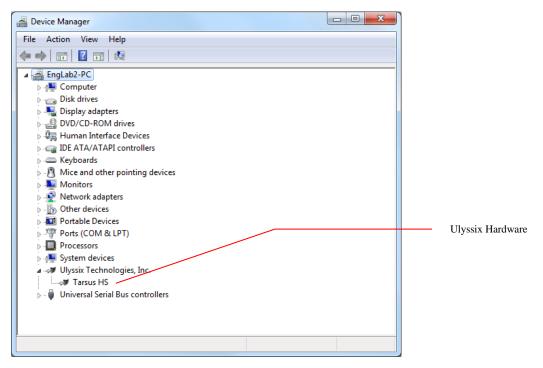


Figure 217 – Device Manager Ulyssix Driver

7. If the Device Manager does not show the Ulyssix card, the next step is to look for any devices that says, "Unknown PCI Bridge Device" or "Unknown PCI Device

- Type." This indicates that the hardware is not properly associated with the installed driver.
- 8. In the menu of Device Manager, select Action → Scan for Hardware Changes. This forces a hardware scan with Windows Plug and Play. The Device Manager updates the hardware after completion of the scan.
- 9. Contact the factory for additional help.

Chapter 8 Appendix B – Archive Data Files Explained

Archive files recorded by the ALTAIR software are binary files containing data from either the Decom or Frame Sync circuitry of the ALTAIR hardware. The archive data files begin with a 328-byte File Header. After the File Header, the rest of the file is composed of minor frame blocks. Each minor frame block begins with a 12-byte Minor Frame Header, which contains the time stamp of the minor frame and lock indicator information. After the Minor Frame Header, the minor frame data follows. All archive data files end with the extension .TAD (Tarsus Archive Data). This section of the manual explains the format of the archive data.

For a Decom archive file, the PCM data is received in the hardware, bit synchronized, frame synchronized, and then decommutated. The decommutated data is word aligned and stored into a large dual port memory device. This byte aligned data is stored as the minor frame data in the archive file.

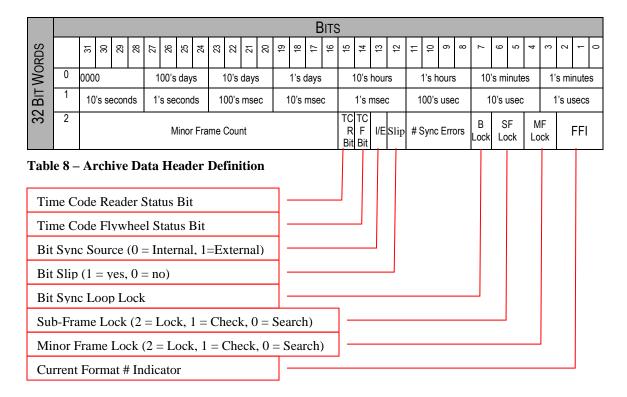
For a Frame Sync archive file, the PCM data is received in the hardware, bit synchronized, and frame synchronized. The minor frame data is packed into a bit stream and stored into a large dual port memory device. This continuous bit stream data is stored as the minor frame data in the archive file.

8.1 Data Storage Format

The Tarsus3 / Tarsus4 hardware and ALTAIR software stores archive data in "Little Endian" format. "Little Endian," derived from the phrase "Little End In," means the little end of the data is stored in memory first. For example, 0x12345678 would be stored in memory as (0x78 0x56 0x34 0x12).

8.2 File Header Definition

Each archived data file contains one file header structure. The file header is stored to indicate the date, time, and configuration file used during the archive sequence. All file header data is in ASCII characters to allow viewing with a standard text editor. The header consists of 328 bytes and is defined as follows:


```
10 bytes – Signature
12 bytes – Version
22 bytes – Date/Time
Note: Time stamped when the file is created.
260 bytes – Configuration file and path
12 bytes – Input Data Source (Either "Frame Sync" or "Decom")
1 Unsigned Integer (32 bits) - Bits/Minor Frame
1 Unsigned Integer (32 bits) - Spare
1 Unsigned Integer (32 bits) – Spare
```

8.2.1 File Header Example	File Header Information
	Signature = Altair
00 0000: 41 6C 74 61 69 72 00 00 00 00 31 39 2E 33 2E 30 Altair19.3.0 00 0010: 2E 30 00 00 00 00 33 2F 32 35 2F 32 30 31 39 20 .03/25/2019 00 0020: 31 32 3A 33 32 3A 30 35 20 50 4D 00 44 3A 5C 50 12:32:05 PM.D:\P 00 0030: 72 6F 67 72 61 6D 20 46 69 6C 65 73 20 28 78 38 rogram Files (x8 00 0040: 36 29 5C 55 6C 79 73 73 69 78 5C 41 6C 74 61 69 6)\Ulyssix\Altai 00 0050: 72 5C 43 6F 6E 66 69 67 75 72 61 74 69 6F 6E 46 r\ConfigurationF 00 0060: 69 6C 65 73 5C 4C 69 76 65 44 65 6D 6F 2E 78 6D iles\LiveDemo.xm 00 0070: 6C 00 00 00 00 00 00 00 00 00 00 00 00 00	Version = 19.3 Date/Time = 3/25/2019 12:32:05 PM Configuration File = C:\Program Files\Ulyssix\Altair\Configur ationsFiles\LiveDemo.xml
00 00A0: 00 00 00 00 00 00 00 00 00 00 00 00 0	Source = Frame Sync
00 0100: 00 00 00 00 00 00 00 00 00 00 00 00	

Figure 218 – Archive File Header Example

8.3 Minor Frame Header Definition

As stated above, header data precedes every minor frame in the archive file. The header contains time in Binary Coded Decimal (BCD) along with various status indicators. The time stamp for each minor frame occurs at the first bit on the frame sync pattern. The header data is defined as three 32-bit data words with the following format.

8.4 Data Description

The Ulyssix hardware aligns the archived Decom data on 16-bit boundaries regardless of the PCM word size. The 16-bit alignment provides an efficient way of extracting a single word of data out of the archive file. The PCM data is right justified in a 16-bit word. For example, a 12-bit PCM word with a value 0x444 hexadecimal followed by another word with a value of 0x555 hexadecimal will show up in the archive file as 0x04440555. This value can be broken into four hexadecimal bytes: 0x04, 0x44, 0x05, and 0x55.

The ALTAIR hardware bit packs the archive Frame Sync data. The bit packing provides a smaller data size; however, it makes extracting a single word of data out of the archive file more difficult. For example, a 12-bit PCM word with a value of 0x444 hexadecimal followed by another word with a value of 0x555 hexadecimal will show up in the archive file as0x 444555. This value can be broken into three hexadecimal bytes: 0x44, 0x45, and 0x55.

The following examples show the actual archived data using a hexadecimal viewer application:

8.4.1 Archive Data 32-Bit Sync 16-Bit Data

For this configuration, a Decom Archive File and a Frame Sync Archive file will have identical data. Since the Frame Sync and Word Size are both integer multiples of 8-bits, the byte aligned Decom archive data and the bit stream Frame Sync archive data are identical.

Sync Pattern Size: 32-bits Sync Pattern: FE6B2840

Minor Frames: 1 # Words per Frame: 16

```
- 02741012 30422590 00000000 FE6B2840 11112222 33334444 55556666 77778888 CCCCCCCC CCCCCCC CCCCCCC 02741012 30423000 00000000 FE6B2840 11112222 33334444 55556666 77778888 CCCCCCCC CCCCCCC CCCCCCC 02741012 30423409 00000000 FE6B2840 11112222 33334444 55556666 77778888 CCCCCCCC CCCCCCC 02741012 30423819 00000000 FE6B2840 11112222 33334444 55556666 77778888 CCCCCCCC
```

Figure 219 – Archive Data Header Example

Header Information

Time = 274:10:12:30.422.590 (Sampled 1st

bit frame sync pattern) Minor Frame Count = 0

Internal Bit Sync

No Bit Slips

Bit Sync Loop Lock

Sub-Frame = Lock

Minor Frame = Lock

Current Format = 0

```
Data Information
                                                          Word 1 = 1111
                                                          Word 2 = 2222
02741012 30422590 000000D0 FE6B2840 11112222 33334444
55556666 77778888 CCCCCCCC CCCCCCC CCCCCCC 02741012
                                                          Word 3 = 3333
30423000 000000D0 FE6B2840 11112222 33334444 55556666
                                                          Word 4 = 4444
77778888 CCCCCCCC CCCCCCC CCCCCCC 02741012 30423409
                                                          Word 5 = 5555
000000D0 FE6B2840 11112222 33334444 55556666 77778888
                                                          Word 6 = 6666
CCCCCCC CCCCCCC CCCCCCC 02741012 30423819 000000D0
                                                          Word 7 = 7777
FE6B2840 11112222 33334444 55556666 77778888 CCCCCCCC
                                                          Word 8 = 8888
Figure 220 – Archive Data Example
                                                          Word 9 - 14 = CCCC
```

8.4.2 Archive Data 24-Bit Sync 12-Bit Data

For this Frame Sync configuration, the Decom archive data will have leading zeros as the 12-bit decom word is packed into a 16-bit space. The Frame Sync archive will not have the leading zeros; therefore, the Frame Sync Archive minor frame is smaller than the Decom Archive minor frame.

Sync Pattern Size: 24-bits Sync Pattern: FAF320 # Minor Frames: 1 # Words per Frame: 8 **Data Information** In (Hexadecimal) Word 1 = 011102860949 31131514 000000D0 00FAF320 01110222 03330444 05550666 07770888 02860949 31131633 000000D0 00FAF320 01110222 03330444 05550666 07770888 Word 2 = 022202860949 31131752 000000D0 00FAF320 01110222 03330444 05550666 07770888 Word 3 = 033302860949 31131870 000000D0 00FAF320 01110222 03330444 05550666 07770888 Word 4 = 044402860949 31131989 000000D0 00FAF320 01110222 03330444 05550666 07770888 Word 5 = 055502860949 31132107 000000D0 00FAF320 01110222 03330444 05550666 07770888 Word 6 = 066602860949 31132226 000000D0 00FAF320 01110222 03330444 05550666 07770888 Word 7 = 0777Figure 221 – 12-bit Archive example Word 8 = 0888**Data Information** In (Hexadecimal) 00000000 00043000 000010B0 FAF32001 11222333 44455566 67778880 Word 1 = 11100000000 00043000 000010B0 FAF32001 11222333 44455566 67778880 Word 2 = 22200000000 00043000 000010B0 FAF32001 11222333 44455566 67778880 Word 3 = 33300000000 00043000 000010B0 FAF32001 11222333 44455566 67778880 Word 4 = 44400000000 00043000 000010B0 FAF32001 11222333 44455566 67778880 Word 5 = 55500000000 00043000 000010B0 FAF32001 11222333 44455566 67778880 Word 6 = 66600000000 00043000 000010B0 FAF32001 11222333 44445566 67778880 Word 7 = 777Figure 222 – 12-bit Frame Sync Archive Example Word 8 = 888

Chapter 9 Appendix C – Tarsus3 / Tarsus4 and Bald Eagle RF / Bald Eagle RF4 Cables and Panels

The Tarsus3 / Tarsus4 cable is designed for optimum performance up to 40 Mbps. The type and quality of the interconnection cable affects any system running high speed data. The type of coax cable used for the Tarsus3 / Tarsus4 pigtail connector is RG179 75-ohm BNC (see the figure below). Ulyssix recommends using 75- ohm cables (either RG59 or RG179 coax cable) to connect to the Tarsus3 / Tarsus4 hardware. For applications below 5 Mbps, the impedance matching of the mating cables is not as critical.

The Tarsus3-cPCI card only occupies one slot in the cPCI chassis, however a larger cPCI panel is available with bulk mounted connectors. This allows direct connection of cables to the Tarsus3-cPCI without the need for the pigtail.

Figure 223 - Tarsus3 / Tarsus4 -01/-02 Pigtail Connector

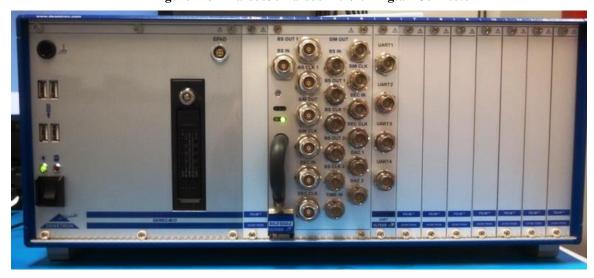


Figure 224 - Tarsus3 Panel Connectors in a cPCI Chassis

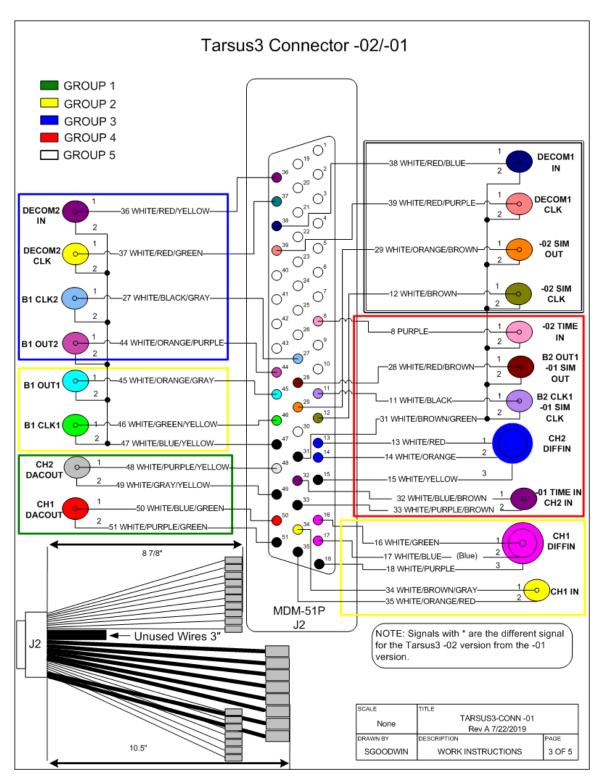


Figure 225 – Tarsus3 / Tarsus4-02/-01 Connector Diagram Part 1

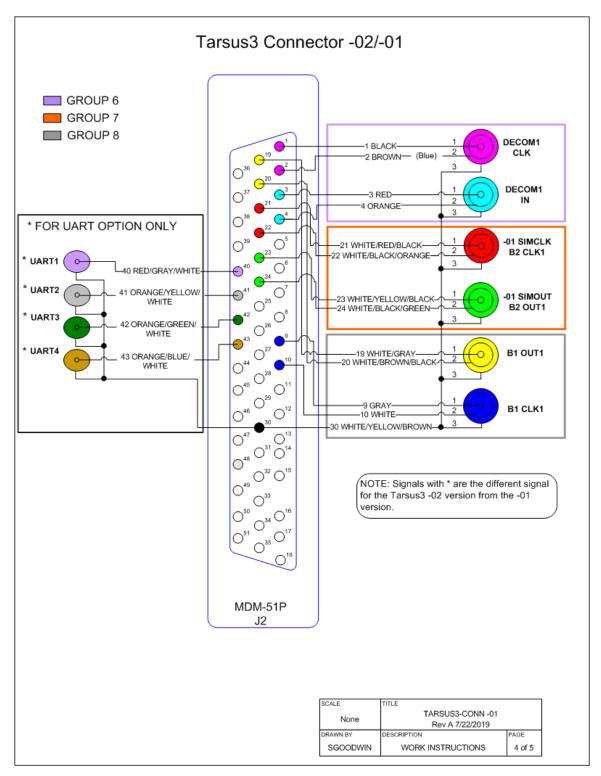


Figure 226 – Tarsus3 / Tarsus4-02/-01 Connector Diagram Part 2

Chapter 10 Appendix D – Bald Eagle RF / Bald Eagle RF4 Connections RF

The Bald Eagle RF / Bald Eagle RF4 is designed for optimum performance up to C Band at 56 MHz of bandwidth. The quality of any system running high RF frequencies and bandwidth is affected by the type and quality of the interconnection cables. The Bald Eagle RF / Bald Eagle RF4 uses SMA connectors for the receiver inputs and the transmitter outputs. Care should be taken not only for the type of cabling used for the RF signals but also to any converters from SMA to other connectors.

The Bald Eagle RF / Bald Eagle RF4 also has a Data Out port for baseband I and Q data output. Please contact Ulyssix for more details on using this connector.

Figure 227 - Bald Eagle RF / Bald Eagle RF4 Panel

Chapter 11 Appendix E – User Software Development

Upon request, Ulyssix provides a software development kit for the hardware API. The software development kit includes a manual for the API (including example code) as well as a dynamic linked library, C++ header files, C# wrappers, and a Delphi wrapper. Numerous Ulyssix customers have developed custom software applications for the Ulyssix hardware. Please contact Ulyssix for more details on the Software Development Kit.

Chapter 12 Appendix F – FlashBurn™ Utility

The Tarsus3 / Tarsus4 is designed using the latest advances in Altera FPGA technology with the latest data acquisition integrated circuits, creating a very versatile telemetry processor card. The board performs different, unique, data acquisition and telemetry processing functions: dual full digitally implemented Bit Syncs, PCM Decoms, multi-channel clock data recovery (CDR) modules, SGLS modulator/demodulator, and other data acquisition applications. The basis for the card is two 14-bit analog to digital paths into over three million gates of user configurable space. The configurable space is made up of Altera high-density ArriaV® FPGAs. The FPGA circuitry can be modified in the field via Ulyssix proprietary Windows application software called "FlashBurnTM." This appendix describes how to use the Tarsus FlashBurnTM software, herein referred to as **FlashBurnTM**.

Care must be taken when loading Ulyssix supplied .RPD files into the Tarsus3 / Tarsus4 hardware. Loading the wrong .RPD file into the wrong Tarsus3 / Tarsus4 FPGA can cause the cPCI or PCIe bus circuitry on the card to lock up. When this occurs, there is no way to access the Tarsus3 / Tarsus4 hardware via FlashBurnTM or ALTAIR.

12.1 Programming

There are two modes of .RPD programming: **Single Card** and **All Cards**.

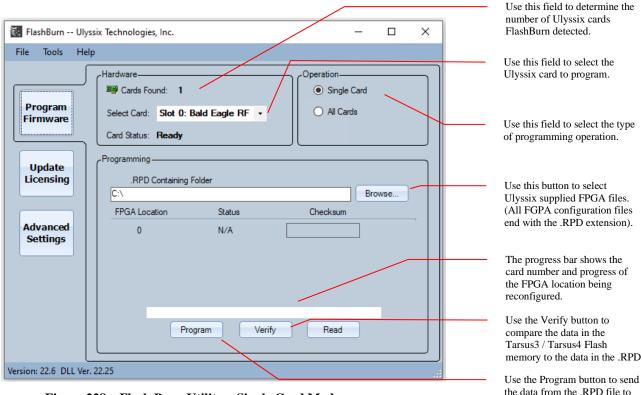
- Install FlashBurnTM onto the system from www.Ulyssix.com/Downloads/Software, or from a Software Installation DVD from Ulyssix. Run the program and follow the installation instructions. When finished, restart the system.
- After restart, open FlashBurnTM by double clicking on the FlashBurnTM icon located on the desktop.
- Make certain the .RPD files supplied by Ulyssix Technologies, Inc. is installed in a RPD folder on the systems hard drive. This can be done online or from a DVD.
- When programming, enter the full path and name of the .RPD file in the programming files fields. Ulyssix supplies instructions with the .RPD files that indicate the order in which the file should be loaded.

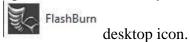
NOTE: It is important to follow the instructions provided with the .RPD files.

12.1.1 Programming a Single Card

In Single Card programming, the user selects a single card to be programmed:

- 1. Open FlashBurnTM from the Start Menu or double click on the desktop icon.
- 2. Select the desired Ulyssix card in the **Select Card** drop-down box.
- 3. Click the **Browse** button to select the folder with the .RPD names.
- 4. Click the **Program** button to start programming the selected Ulyssix card.
- 5. A dialog box will ask you to verify the checksum matches the checksum supplied with the .RPD Readme file.
- 6. FlashBurn runs through t statuses: Program Initiation, Erasing, Programming, and Verifying.
- 7. Once all the programs are loaded the Status will say "Done" and above the progress bar will say "Programming, Verification, and Initialization Complete!"




Figure 228 – Flash Burn Utility – Single Card Mode

the data from the .RPD file to the Tarsus3 / Tarsus4 Flash

12.1.2 Programming All Cards

In All Cards programming, FlashBurn programs the FPGAs in every card in the system:

1. Open FlashBurnTM utility from the Start Menu or double click on the

- 2. Select the desired Ulyssix card in the **Select Card** drop-down box.
- 3. Click the **Browse** button to select the folder with the .RPD names.
- 4. Click the **Program** button to start programming the selected Ulyssix card.
- 5. A dialog box will ask you to verify the checksum matches the checksum supplied with the .RPD Readme file.
- 6. FlashBurn runs through t statuses: Program Initiation, Erasing, Programming, and Verifying.
- 7. Once all the programs are loaded the Status will say "Done" and above the progress bar will say "Programming, Verification, and Initialization Complete!"

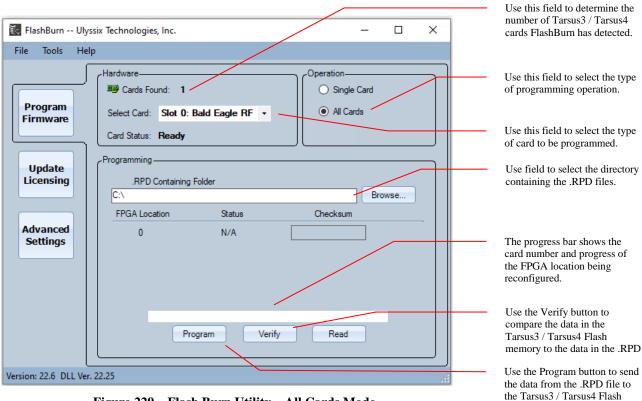


Figure 229 - Flash Burn Utility - All Cards Mode

12.2 Troubleshooting Display Issues

FlashBurn sometimes has display issues on super high-resolution displays when Windows artificially increases the size of applications or fonts. These options in Windows are designed to increase the size of applications, but sometimes distort the application in the process. Methods to correct this distortion vary depending on the version of the Windows operating system.

12.2.1 Windows 10 Display Issues

Below are methods to address a display issue with FlashBurn in Windows 10. Please try them in order. When you find one that is successful, no further changes are needed.

Override high DPI scaling behavior. This will only affect FlashBurn.

- 1. Right click on the FlashBurn icon on the desktop and select Properties from the menu.
- 2. In the Properties window, select the Compatibility tab.
- 3. In the Compatibility tab, check the box next to Override high DPI scaling behavior.
- 4. Change the Scaling Performed by combo box to System (Enhanced) and then click the OK button.
- 5. For the setting to take effect, the user must log out of Windows 10 and then log back in.

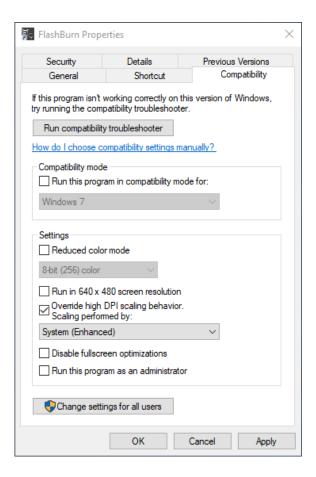


Figure 230 - FlashBurn Windows 10 Override high DPI Scaling Behavior

Change the size of text, apps, and other items. This will affect all applications running on the computer.

- 1. Right click on the desktop and select "Display Settings."
- 2. Under the heading Scale and Layout, find the combo box for Change the size of text, apps, and other items.
- 3. Select 100% on the combo.
- 4. For the setting to take effect, the user must log out of Windows 10 and then log back in.

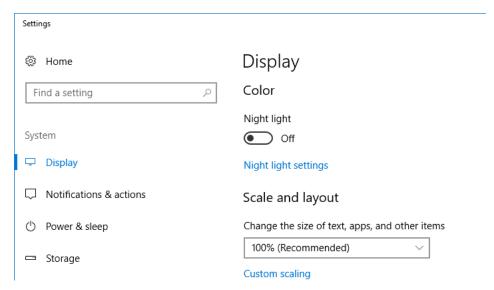


Figure 231 – Windows 10 Display Scale and Layout Properties

12.2.2 Windows 7 Display Issues

Below are methods to address a display issue with FlashBurn in Windows 10. Please try them in order. When you find one that is successful, no further changes are needed.

Disable display scaling on high DPI settings. This will only affect FlashBurn.

- 1. Right click on the FlashBurn icon on the desktop and select Properties from the menu.
- 2. In the Properties window, select the Compatibility tab.
- 3. In the Compatibility tab, check the box next to Disable display scaling on high DPI settings and then click the OK button.
- 4. The change should take effect instantly. If it does not, try restarting Windows 7.

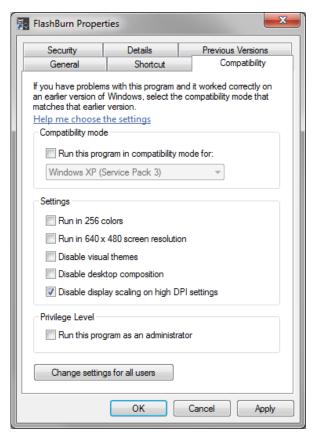


Figure 232 - FlashBurn Windows 7 Disable Display Scaling on high DPI Settings

Change the size of text, apps, and other items. This will affect all applications running on the computer.

- 1. Navigate to the Control Panel and select Appearance and Personalization and then Display.
- 2. In the Display window select 100% from the list of choices and then click the Apply button.

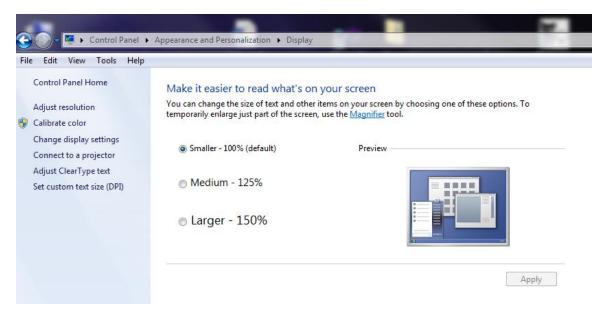


Figure 233 - FlashBurn Windows 7 Display Scaling

- 3. On the menu on the left side of the screen, click Set custom text size (DPI).
- 4. In the Custom DPI Setting window, select 100% from the combo box and click OK.

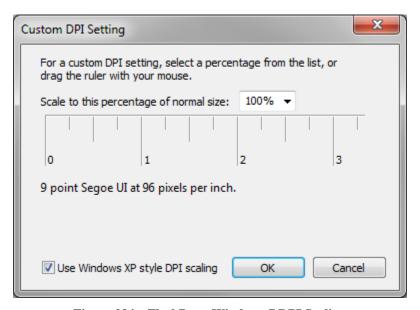


Figure 234 – FlashBurn Windows 7 DPI Scaling

5. The change should take effect instantly. If it does not, try restarting Windows 7.

Chapter 13 Appendix G – FEC and Viterbi Theory

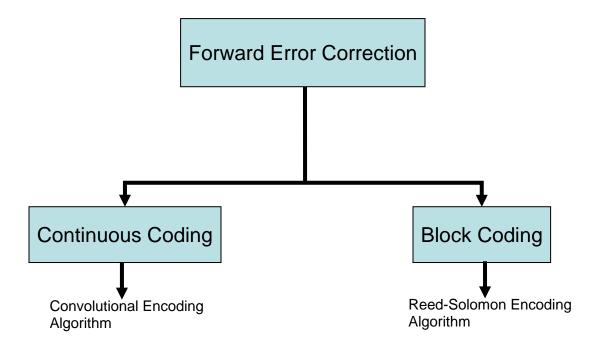


Figure 235 – Forward Error Correction Block Diagram

Figure 110 shows a diagram describing the algorithm choices to implement Forward Error Correction. Viterbi Decoding is the most common algorithm used in conjunction with a Convolutional Encoder and is the choice for the Ulyssix decoder.

• Forward Error Correction (FEC):

- Forward error correction is a method that allows users to improve error control capabilities.
- This is accomplished by transmitting redundant bits to the original data stream which can then be used to detect and correct errors.
- Eliminates the need to resend data that usually results from transmission errors.
- The error correcting ability is determined by the design of the error correcting code.

Most Common Categories of FEC:

1.) Continuous Codes:

- Performs operations on bit or symbol streams of arbitrary length.
- Commonly referred to as Convolutional Coding.
- Most common decoding method Viterbi Decoding.

2.) Block Codes:

- Performs operations on fixed-size blocks or packets of symbols whose size is usually a function of a preset algorithm.
- Most common type is Reed-Solomon Coding.

Convolutional versus Block Encoding:

- Soft-Decision Data permits Convolutionally Encoded System gain to degrade slowly as the error rate increases, whereas Block-Level codes only correct errors up to a point and the gain drops off rapidly afterwards.
- Convolutional codes do not require block synchronization.
- Convolutional codes are decoded after an arbitrary length of data whereas block-level codes require the reception of an entire data block before decoding begins.

Convolutional Encoder Parameters:

- Commonly specified by three parameters:
 - n : number of output bits.
 - k : number of input bits.
 - m: number of memory registers.
- Code Rate: k/n
 - Ratio describing the number of input bits to output bits.
 - Also, an indicator of code efficiency.
 - Expressed as k/n:
 - k ranges from 1 to 8, m from 2 to 10 and k/n from 1/8 to 7/8.
- Constraint Length: K
 - Represents the number of bits in encoder memory.
 - Directly affects the generation of output bits n.
- Generator Polynomials: G1, G2
 - Used to choose which register bits are selected from registers.
 - The number of polynomials is dependent on n.

Viterbi Soft Bit Decision:

Soft-Decision increases the Viterbi decoder's ability to correctly decode an incoming data stream by quantizing a specified number of bits. The Ulyssix Viterbi Decoder uses three-bit soft decision making. This means that for rate ½ each of the two encoded bits are now represented by 3-bits instead of 1-bit. When only a single bit is used for the two encoded bits this is called Hard Bit Decision. Since we are using three bits, eight represents the maximum likelihood that a binary '1' was received whereas zero represents the maximum likelihood that a binary '0' was received.